Files
kraken/src/Parser.cpp

449 lines
16 KiB
C++
Raw Normal View History

2013-05-20 19:34:15 -04:00
#include "Parser.h"
Parser::Parser() {
}
Parser::~Parser() {
}
Symbol* Parser::getOrAddSymbol(std::string symbolString, bool isTerminal) {
Symbol* symbol;
if (symbols.find(symbolString) == symbols.end()) {
symbol = new Symbol(symbolString, isTerminal);
symbols[symbolString] = symbol;
} else {
symbol = symbols[symbolString];
}
return(symbol);
}
void Parser::loadGrammer(std::string grammerInputString) {
reader.setString(grammerInputString);
std::string currToken = reader.word();
while(currToken != "") {
//Load the left of the rule
ParseRule* currentRule = new ParseRule();
Symbol* leftSide = getOrAddSymbol(currToken, false); //Left handle is never a terminal
currentRule->setLeftHandle(leftSide);
reader.word(); //Remove the =
//Add the right side, adding new Symbols to symbol map.
currToken = reader.word();
while (currToken != ";") {
currentRule->appendToRight(getOrAddSymbol(currToken, currToken.at(0)=='\"')); //If first character is a ", then is a terminal
currToken = reader.word();
//If there are multiple endings to this rule, finish this rule and start a new one with same left handle
if (currToken == "|") {
loadedGrammer.push_back(currentRule);
currentRule = new ParseRule();
currentRule->setLeftHandle(leftSide);
currToken = reader.word();
}
}
//Add new rule to grammer
loadedGrammer.push_back(currentRule);
//Get next token
currToken = reader.word();
}
std::cout << "Parsed!\n";
}
std::vector<Symbol*>* Parser::firstSet(Symbol* token) {
std::vector<Symbol*>* first = new std::vector<Symbol*>();
//First, if the symbol is a terminal, than it's first set is just itself.
if (token->isTerminal()) {
first->push_back(token);
return(first);
}
//Otherwise....
//Ok, to make a first set, go through the grammer, if the token is part of the left side, add it's production's first token's first set.
//Theoretically, if that one includes mull, do the next one too. However, null productions have not yet been implemented.
Symbol* rightToken = NULL;
std::vector<Symbol*>* recursiveFirstSet = NULL;
for (std::vector<ParseRule*>::size_type i = 0; i < loadedGrammer.size(); i++) {
if (*token == *(loadedGrammer[i]->getLeftSide())) {
rightToken = loadedGrammer[i]->getRightSide()[0]; //Get the first token of the right side of this rule
if (rightToken->isTerminal())
first->push_back(rightToken);
else {
//Add the entire set
recursiveFirstSet = firstSet(rightToken);
first->insert(first->end(), recursiveFirstSet->begin(), recursiveFirstSet->end());
}
}
}
return(first);
}
void Parser::printFirstSets() {
std::vector<Symbol*>* first = NULL;
for (std::vector<Symbol*>::size_type i = 0; i < symbolIndexVec.size(); i++) {
first = firstSet(symbolIndexVec[i]);
std::cout << "First set of " << symbolIndexVec[i]->toString() << " is: ";
for (std::vector<Symbol*>::size_type j = 0; j < first->size(); j++)
std::cout << (*first)[j]->toString() << " ";
std::cout << std::endl;
}
}
std::vector<Symbol*>* Parser::followSet(Symbol* token) {
std::vector<Symbol*>* follow = new std::vector<Symbol*>();
//First, if the symbol is a terminal, than it's follow set is the empty set.
if (token->isTerminal()) {
return(follow);
}
//Otherwise....
//Ok, to make a follow set, go through the grammer looking for the terminal in the right side. If it exists
//Then add to it's follow set the first set of the next token, or if it is at the end, the follow set of the left side.
//Theoretically, if that one includes mull, do the next one too. However, null productions have not yet been implemented.
Symbol* rightToken = NULL;
std::vector<Symbol*>* recursiveFollowSet = NULL;
std::vector<Symbol*> rightSide;
for (std::vector<ParseRule*>::size_type i = 0; i < loadedGrammer.size(); i++) {
rightSide = loadedGrammer[i]->getRightSide();
for (std::vector<Symbol*>::size_type j = 0; j < rightSide.size(); j++) {
if (*token == *(rightSide[j])) {
//If this is the first grammer rule, that is the goal rule, add $EOF$ and move on
if (i == 0) {
follow->push_back(new Symbol("$EOF$", false));
break;
}
if (j < rightSide.size()-1) {
if (rightSide[j+1]->isTerminal())
follow->push_back(rightSide[j+1]);
else {
recursiveFollowSet = firstSet(rightSide[j+1]);
follow->insert(follow->begin(), recursiveFollowSet->begin(), recursiveFollowSet->end());
}
} else {
recursiveFollowSet = followSet(loadedGrammer[i]->getLeftSide());
follow->insert(follow->begin(), recursiveFollowSet->begin(), recursiveFollowSet->end());
}
}
}
}
return(follow);
}
void Parser::printFollowSets() {
std::vector<Symbol*>* follow = NULL;
for (std::vector<Symbol*>::size_type i = 0; i < symbolIndexVec.size(); i++) {
follow = followSet(symbolIndexVec[i]);
std::cout << "Follow set of " << symbolIndexVec[i]->toString() << " is: ";
for (std::vector<Symbol*>::size_type j = 0; j < follow->size(); j++)
std::cout << (*follow)[j]->toString() << " ";
std::cout << std::endl;
}
}
void Parser::createStateSet() {
std::cout << "Begining creation of stateSet" << std::endl;
stateSets.push_back( new State(0, loadedGrammer[0]) );
//std::cout << "Begining for main set for loop" << std::endl;
for (std::vector< State* >::size_type i = 0; i < stateSets.size(); i++) {
//closure
closure(stateSets[i]);
//Add the new states
addStates(&stateSets, stateSets[i]);
}
}
void Parser::closure(State* state) {
//Add all the applicable rules.
//std::cout << "Closure on " << state->toString() << " is" << std::endl;
for (std::vector<ParseRule*>::size_type i = 0; i < state->getTotal()->size(); i++) {
for (std::vector<ParseRule*>::size_type j = 0; j < loadedGrammer.size(); j++) {
//If the current symbol in the rule is not null (rule completed) and it equals a grammer's left side
if ((*state->getTotal())[i]->getAtNextIndex() != NULL && *((*state->getTotal())[i]->getAtNextIndex()) == *(loadedGrammer[j]->getLeftSide())) {
//std::cout << (*state->getTotal())[i]->getAtNextIndex()->toString() << " has an applicable production " << loadedGrammer[j]->toString() << std::endl;
//Check to make sure not already in
bool isAlreadyInState = false;
for (std::vector<ParseRule*>::size_type k = 0; k < state->getTotal()->size(); k++) {
if ((*state->getTotal())[k] == loadedGrammer[j]) {
isAlreadyInState = true;
break;
}
}
if (!isAlreadyInState)
state->remaining.push_back(loadedGrammer[j]);
}
}
}
//std::cout << state->toString() << std::endl;
}
//Adds state if it doesn't already exist.
void Parser::addStates(std::vector< State* >* stateSets, State* state) {
std::vector< State* > newStates;
//For each rule in the state we already have
std::vector<ParseRule*>* currStateTotal = state->getTotal();
for (std::vector<ParseRule*>::size_type i = 0; i < currStateTotal->size(); i++) {
//Clone the current rule
ParseRule* advancedRule = (*currStateTotal)[i]->clone();
//Try to advance the pointer, if sucessful see if it is the correct next symbol
if (advancedRule->advancePointer()) {
//Technically, it should be the set of rules sharing this symbol advanced past in the basis for new state
//So search our new states to see if any of them use this advanced symbol as a base.
//If so, add this rule to them.
//If not, create it.
bool symbolAlreadyInState = false;
for (std::vector< State* >::size_type j = 0; j < newStates.size(); j++) {
if (*(newStates[j]->basis[0]->getAtIndex()) == *(advancedRule->getAtIndex())) {
symbolAlreadyInState = true;
//So now check to see if this exact rule is in this state
if (!newStates[j]->containsRule(advancedRule))
newStates[j]->basis.push_back(advancedRule);
//We found a state with the same symbol, so stop searching
break;
}
}
if (!symbolAlreadyInState) {
State* newState = new State(stateSets->size()+newStates.size(),advancedRule);
newStates.push_back(newState);
}
}
//Also add any completed rules as reduces in the action table
//See if reduce
//Also, this really only needs to be done for the state's basis, but we're already iterating through, so...
if ((*currStateTotal)[i]->isAtEnd()) {
std::cout << (*currStateTotal)[i]->toString() << " is at end, adding reduce to table" << std::endl;
//This should iterate through the follow set, but right now is LR(0), so all symbols
for (std::vector<Symbol*>::size_type j = 0; j < symbolIndexVec.size(); j++)
addToTable(state, symbolIndexVec[j], new ParseAction(ParseAction::REDUCE, (*currStateTotal)[i]));
} else {
std::cout << (*currStateTotal)[i]->toString() << " is NOT at end" << std::endl;
}
}
//Put all our new states in the set of states only if they're not already there.
bool stateAlreadyInAllStates = false;
Symbol* currStateSymbol;
for (std::vector< State * >::size_type i = 0; i < newStates.size(); i++) {
currStateSymbol = (*(newStates[i]->getBasis()))[0]->getAtIndex();
for (std::vector< State * >::size_type j = 0; j < stateSets->size(); j++) {
if (*(newStates[i]) == *((*stateSets)[j])) {
stateAlreadyInAllStates = true;
//If it does exist, we should add it as the shift/goto in the action table
addToTable(state, currStateSymbol, new ParseAction(ParseAction::SHIFT, j));
break;
}
}
if (!stateAlreadyInAllStates) {
stateSets->push_back(newStates[i]);
stateAlreadyInAllStates = false;
//If the state does not already exist, add it and add it as the shift/goto in the action table
addToTable(state, currStateSymbol, new ParseAction(ParseAction::SHIFT, stateSets->size()-1));
}
}
}
std::string Parser::stateSetToString() {
std::string concat = "";
for (std::vector< State *>::size_type i = 0; i < stateSets.size(); i++) {
concat += stateSets[i]->toString();
}
return concat;
}
void Parser::addToTable(State* fromState, Symbol* tranSymbol, ParseAction* action) {
//If this is the first time we're adding to the table, add the EOF character
if (symbolIndexVec.size() == 0)
symbolIndexVec.push_back(new Symbol("$EOF$", false));
//find what state num the from state is
int stateNum = -1;
for (std::vector<State*>::size_type i = 0; i < stateSets.size(); i++) {
if (*(stateSets[i]) == *fromState) {
stateNum = i;
break;
}
}
2013-05-23 01:35:54 -04:00
//std::cout << "stateNum is " << stateNum << std::endl;
//If state not in table, add up to and it.
//std::cout << "table size is " << table.size() <<std::endl;
while (stateNum >= table.size()) {
//std::cout << "Pushing back table" << std::endl;
table.push_back(new std::vector<ParseAction*>);
}
//find out what index this symbol is on
int symbolIndex = -1;
for (std::vector<Symbol*>::size_type i = 0; i < symbolIndexVec.size(); i++) {
if ( *(symbolIndexVec[i]) == *tranSymbol ) {
//Has been found
symbolIndex = i;
break;
}
}
//std::cout << "symbolIndex is " << symbolIndex << std::endl;
//If we've never done this symbol, add it
if (symbolIndex < 0) {
// std::cout << "pushing back symbolIndexVec" <<std::endl;
symbolIndex = symbolIndexVec.size();
symbolIndexVec.push_back(tranSymbol);
}
//std::cout << "symbolIndex is " << symbolIndex << " which is " << symbolIndexVec[symbolIndex]->toString() << std::endl;
//std::cout << table[stateNum] << " ";
while (symbolIndex >= table[stateNum]->size()) {
table[stateNum]->push_back(NULL);
}
//If this table slot is empty
//std::cout << "table[stateNum] is " << table[stateNum] << std::endl;
//std::cout << "blank is " << (*(table[stateNum]))[symbolIndex] << std::endl;
if ( (*(table[stateNum]))[symbolIndex] == NULL ) {
std::cout << "Null, adding " << action->toString() << std::endl;
(*(table[stateNum]))[symbolIndex] = action;
}
//If the slot is not empty and does not contain ourself, then it is a conflict
else if ( *((*(table[stateNum]))[symbolIndex]) != *action) {
std::cout << "not Null!" << std::endl;
std::cout << "Conflict between old: " << (*(table[stateNum]))[symbolIndex]->toString() << " and new: " << action->toString() << std::endl;
//Don't overwrite
//(*(table[stateNum]))[symbolIndex] = action;
}
}
std::string Parser::tableToString() {
std::string concat = "";
for (std::vector<Symbol*>::size_type i = 0; i < symbolIndexVec.size(); i++)
concat += "\t" + symbolIndexVec[i]->toString();
concat += "\n";
for (std::vector< std::vector< ParseRule* > >::size_type i = 0; i < table.size(); i++) {
concat += intToString(i) + "\t";
for (std::vector< ParseRule* >::size_type j = 0; j < table[i]->size(); j++) {
if ( (*(table[i]))[j] != NULL)
concat += (*(table[i]))[j]->toString() + "\t";
else
concat += "NULL\t";
}
concat += "\n";
}
return(concat);
}
ParseAction* Parser::getTable(int state, Symbol* token) {
int symbolIndex = -1;
for (std::vector<Symbol*>::size_type i = 0; i < symbolIndexVec.size(); i++) {
if ( *(symbolIndexVec[i]) == *token) {
symbolIndex = i;
break;
}
}
//This is the accepting state, as it is the 1th's state's reduction on EOF, which is 0 in the symbolIndexVec
//(This assumes singular goal assignment, a simplification for now)
if (state == 1 && symbolIndex == 0)
return(new ParseAction(ParseAction::ACCEPT));
//If ourside the symbol range of this state (same as NULL), reject
if ( symbolIndex >= table[state]->size() )
return(new ParseAction(ParseAction::REJECT));
ParseAction* action = (*(table[state]))[symbolIndex];
//If null, reject. (this is a space with no other action)
if (action == NULL)
return(new ParseAction(ParseAction::REJECT));
//Otherwise, we have something, so return it
return (action);
2013-05-23 01:35:54 -04:00
}
NodeTree* Parser::parseInput(Lexer* lexer) {
Symbol* token = lexer->next();
2013-05-23 01:35:54 -04:00
ParseAction* action;
stateStack.push(0);
symbolStack.push(new Symbol("INVALID", false));
while (true) {
std::cout << "In state: " << intToString(stateStack.top()) << std::endl;
action = getTable(stateStack.top(), token);
std::cout << "Doing ParseAction: " << action->toString() << std::endl;
2013-05-23 01:35:54 -04:00
switch (action->action) {
case ParseAction::REDUCE:
{
std::cout << "Reduce by " << action->reduceRule->toString() << std::endl;
2013-05-23 01:35:54 -04:00
int rightSideLength = action->reduceRule->getRightSide().size();
//Keep track of symbols popped for parse tree
std::vector<Symbol*> poppedSymbols;
2013-05-23 01:35:54 -04:00
for (int i = 0; i < rightSideLength; i++) {
poppedSymbols.push_back(symbolStack.top());
2013-05-23 01:35:54 -04:00
stateStack.pop();
symbolStack.pop();
}
std::reverse(poppedSymbols.begin(), poppedSymbols.end()); //To put in order
//Assign the new tree to the new Symbol
Symbol* newSymbol = action->reduceRule->getLeftSide()->clone();
newSymbol->setSubTree(reduceTreeCombine(newSymbol, poppedSymbols));
symbolStack.push(newSymbol);
std::cout << "top of state is " << intToString(stateStack.top()) << " symbolStack top is " << symbolStack.top()->toString() << std::endl;
stateStack.push(getTable(stateStack.top(), symbolStack.top())->shiftState);
std::cout << "Reduced, now condition is" << std::endl;
std::cout << "top of state is " << intToString(stateStack.top()) << " symbolStack top is " << symbolStack.top()->toString() << std::endl;
2013-05-23 01:35:54 -04:00
break;
}
case ParseAction::SHIFT:
std::cout << "Shift " << token->toString() << std::endl;
2013-05-23 01:35:54 -04:00
symbolStack.push(token);
token = lexer->next();
2013-05-23 01:35:54 -04:00
stateStack.push(action->shiftState);
break;
case ParseAction::ACCEPT:
std::cout << "ACCEPTED!" << std::endl;
return(symbolStack.top()->getSubTree());
2013-05-23 01:35:54 -04:00
break;
case ParseAction::REJECT:
std::cout << "REJECTED!" << std::endl;
std::cout << "REJECTED Symbol was " << token->toString() << std::endl;
return(NULL);
2013-05-23 01:35:54 -04:00
break;
}
}
}
NodeTree* Parser::reduceTreeCombine(Symbol* newSymbol, std::vector<Symbol*> &symbols) {
NodeTree* newTree = new NodeTree(newSymbol->toString());
for (std::vector<Symbol*>::size_type i = 0; i < symbols.size(); i++) {
if (symbols[i]->isTerminal())
newTree->addChild(new NodeTree(symbols[i]->toString()));
else
newTree->addChild(symbols[i]->getSubTree());
}
return(newTree);
}
2013-05-20 19:34:15 -04:00
std::string Parser::grammerToString() {
//Iterate through the vector, adding string representation of each grammer rule
std::cout << "About to toString\n";
std::string concat = "";
for (int i = 0; i < loadedGrammer.size(); i++) {
concat += loadedGrammer[i]->toString() + "\n";
2013-05-20 19:34:15 -04:00
}
return(concat);
}
std::string Parser::grammerToDOT() {
//Iterate through the vector, adding DOT representation of each grammer rule
//std::cout << "About to DOT export\n";
std::string concat = "";
for (int i = 0; i < loadedGrammer.size(); i++) {
concat += loadedGrammer[i]->toDOT();
}
return("digraph Kraken_Grammer { \n" + concat + "}");
}