Old .gitignore actually prevent the kraken versions of the benchmarks from being comitted, scarily enough - also some of the c fib tests
This commit is contained in:
24
.gitignore
vendored
24
.gitignore
vendored
@@ -1,8 +1,6 @@
|
||||
_site
|
||||
build
|
||||
build-ninja
|
||||
*.comp
|
||||
stats
|
||||
*.swp
|
||||
*.swm
|
||||
*.swn
|
||||
@@ -12,28 +10,6 @@ stats
|
||||
*.swj
|
||||
*.swk
|
||||
*.png
|
||||
*krakout*
|
||||
kraklist.txt
|
||||
.*.un~
|
||||
papers
|
||||
callgrind*
|
||||
*.comp_new
|
||||
*.comp_new.expr
|
||||
*.comp_bac
|
||||
bintest.bin
|
||||
*.dot
|
||||
.stfolder
|
||||
kraken
|
||||
*.c
|
||||
kraken_bac
|
||||
kraken_deprecated
|
||||
bootstrap_kalypso
|
||||
kraken_bootstrap
|
||||
compiler_version.krak
|
||||
untracked_misc
|
||||
k_prime
|
||||
|
||||
|
||||
# Added by cargo
|
||||
|
||||
/target
|
||||
|
||||
14
fib_test/fib.c
Normal file
14
fib_test/fib.c
Normal file
@@ -0,0 +1,14 @@
|
||||
|
||||
int fib(n) {
|
||||
if (n == 0) {
|
||||
return 1;
|
||||
} else if (n == 1) {
|
||||
return 1;
|
||||
} else {
|
||||
return fib(n-1) + fib(n-2);
|
||||
}
|
||||
}
|
||||
int main(int argc, char **argv) {
|
||||
printf("%d\n", fib(atoi(argv[1])));
|
||||
return 0;
|
||||
}
|
||||
16
fib_test/fib_let.c
Normal file
16
fib_test/fib_let.c
Normal file
@@ -0,0 +1,16 @@
|
||||
|
||||
int fib(n) {
|
||||
if (n == 0) {
|
||||
return 1;
|
||||
} else if (n == 1) {
|
||||
return 1;
|
||||
} else {
|
||||
int r1 = fib(n-1);
|
||||
int r2 = fib(n-2);
|
||||
return r1 + r2;
|
||||
}
|
||||
}
|
||||
int main(int argc, char **argv) {
|
||||
printf("%d\n", fib(atoi(argv[1])));
|
||||
return 0;
|
||||
}
|
||||
22
koka_bench/kraken/CMakeLists.txt
Normal file
22
koka_bench/kraken/CMakeLists.txt
Normal file
@@ -0,0 +1,22 @@
|
||||
set(sources rbtree.kp rbtree-opt.kp nqueens.kp cfold.kp deriv.kp)
|
||||
|
||||
set(kraken "../../kraken_wrapper.sh")
|
||||
|
||||
|
||||
foreach (source IN LISTS sources)
|
||||
get_filename_component(basename "${source}" NAME_WE)
|
||||
set(name "kraken-${basename}")
|
||||
|
||||
set(out_dir "${CMAKE_CURRENT_BINARY_DIR}/out/bench")
|
||||
set(out_path "${out_dir}/${name}")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${out_path}
|
||||
COMMAND ${kraken} "${CMAKE_CURRENT_SOURCE_DIR}/${source}" ${out_dir} ${name}
|
||||
DEPENDS ${source}
|
||||
VERBATIM)
|
||||
|
||||
add_custom_target(update-${name} ALL DEPENDS "${out_path}")
|
||||
add_executable(${name}-exe IMPORTED)
|
||||
set_target_properties(${name}-exe PROPERTIES IMPORTED_LOCATION "${out_path}")
|
||||
endforeach ()
|
||||
244
koka_bench/kraken/cfold.kp
Normal file
244
koka_bench/kraken/cfold.kp
Normal file
@@ -0,0 +1,244 @@
|
||||
((wrap (vau root_env (quote)
|
||||
((wrap (vau (let1)
|
||||
(let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se)))
|
||||
(let1 current-env (vau de () de)
|
||||
(let1 cons (lambda (h t) (concat (array h) t))
|
||||
(let1 Y (lambda (f3)
|
||||
((lambda (x1) (x1 x1))
|
||||
(lambda (x2) (f3 (wrap (vau app_env (& y) (lapply (x2 x2) y app_env)))))))
|
||||
(let1 vY (lambda (f)
|
||||
((lambda (x3) (x3 x3))
|
||||
(lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1))))))
|
||||
(let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2)
|
||||
true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2)))))
|
||||
(let (
|
||||
lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args)))))
|
||||
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
|
||||
if (vau de (con than & else) (eval (array cond con than
|
||||
true (cond (> (len else) 0) (idx else 0)
|
||||
true false)) de))
|
||||
|
||||
map (lambda (f5 l5)
|
||||
(let (helper (rec-lambda recurse (f4 l4 n4 i4)
|
||||
(cond (= i4 (len l4)) n4
|
||||
(<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array
|
||||
(f4 (idx l4 (+ i4 0)))
|
||||
(f4 (idx l4 (+ i4 1)))
|
||||
(f4 (idx l4 (+ i4 2)))
|
||||
(f4 (idx l4 (+ i4 3)))
|
||||
)) (+ i4 4))
|
||||
true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1)))))
|
||||
(helper f5 l5 (array) 0)))
|
||||
|
||||
|
||||
map_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(cond (= i (len l)) n
|
||||
(<= i (- (len l) 4)) (recurse f l (concat n (array
|
||||
(f (+ i 0) (idx l (+ i 0)))
|
||||
(f (+ i 1) (idx l (+ i 1)))
|
||||
(f (+ i 2) (idx l (+ i 2)))
|
||||
(f (+ i 3) (idx l (+ i 3)))
|
||||
)) (+ i 4))
|
||||
true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
|
||||
filter_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1))
|
||||
(recurse f l n (+ i 1))))))
|
||||
(helper f l (array) 0)))
|
||||
filter (lambda (f l) (filter_i (lambda (i x) (f x)) l))
|
||||
|
||||
; Huge thanks to Oleg Kiselyov for his fantastic website
|
||||
; http://okmij.org/ftp/Computation/fixed-point-combinators.html
|
||||
Y* (lambda (& l)
|
||||
((lambda (u) (u u))
|
||||
(lambda (p)
|
||||
(map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l))))
|
||||
vY* (lambda (& l)
|
||||
((lambda (u) (u u))
|
||||
(lambda (p)
|
||||
(map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l))))
|
||||
|
||||
let-rec (vau de (name_func body)
|
||||
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
|
||||
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
|
||||
overwrite_name (idx name_func (- (len name_func) 2)))
|
||||
(eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs)))
|
||||
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
|
||||
body) de)))
|
||||
let-vrec (vau de (name_func body)
|
||||
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
|
||||
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
|
||||
overwrite_name (idx name_func (- (len name_func) 2)))
|
||||
(eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs)))
|
||||
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
|
||||
body) de)))
|
||||
|
||||
flat_map (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(recurse f l (concat n (f (idx l i))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
flat_map_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(recurse f l (concat n (f i (idx l i))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
|
||||
; with all this, we make a destrucutring-capable let
|
||||
let (let (
|
||||
destructure_helper (rec-lambda recurse (vs i r)
|
||||
(cond (= (len vs) i) r
|
||||
(array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i)))
|
||||
new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i))
|
||||
)
|
||||
(recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1))))))
|
||||
true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2))))
|
||||
))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de)))
|
||||
|
||||
; and a destructuring-capable lambda!
|
||||
only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true
|
||||
(symbol? (idx a i)) (recurse a (+ i 1))
|
||||
true false))
|
||||
|
||||
; Note that if macro_helper is inlined, the mapping lambdas will close over
|
||||
; se, and then not be able to be taken in as values to the maps, and the vau
|
||||
; will fail to partially evaluate away.
|
||||
lambda (let (macro_helper (lambda (p b) (let (
|
||||
sym_params (map (lambda (param) (if (symbol? param) param
|
||||
(str-to-symbol (str param)))) p)
|
||||
body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b)
|
||||
) (array vau sym_params body))))
|
||||
(vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se)
|
||||
(wrap (eval (macro_helper p b) se)))))
|
||||
|
||||
; and rec-lambda - yes it's the same definition again
|
||||
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
|
||||
|
||||
nil (array)
|
||||
not (lambda (x) (if x false true))
|
||||
or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false
|
||||
(= (+ 1 i) (len bs)) (idx bs i)
|
||||
true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1)))))))
|
||||
(vau se (& bs) (eval (macro_helper bs 0) se)))
|
||||
and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true
|
||||
(= (+ 1 i) (len bs)) (idx bs i)
|
||||
true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp)))))
|
||||
(vau se (& bs) (eval (macro_helper bs 0) se)))
|
||||
|
||||
|
||||
|
||||
foldl (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
|
||||
(recurse f (lapply f (cons z (map (lambda (x) (idx x i)) vs))) vs (+ i 1)))))
|
||||
(lambda (f z & vs) (helper f z vs 0)))
|
||||
foldr (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
|
||||
(lapply f (cons (recurse f z vs (+ i 1)) (map (lambda (x) (idx x i)) vs))))))
|
||||
(lambda (f z & vs) (helper f z vs 0)))
|
||||
reverse (lambda (x) (foldl (lambda (acc i) (cons i acc)) (array) x))
|
||||
zip (lambda (& xs) (lapply foldr (concat (array (lambda (a & ys) (cons ys a)) (array)) xs)))
|
||||
|
||||
match (let (
|
||||
evaluate_case (rec-lambda evaluate_case (access c) (cond
|
||||
(symbol? c) (array true (lambda (b) (array let (array c access) b)))
|
||||
(and (array? c) (= 2 (len c)) (= 'unquote (idx c 0))) (array (array = access (idx c 1)) (lambda (b) b))
|
||||
(and (array? c) (= 2 (len c)) (= 'quote (idx c 0))) (array (array = access c) (lambda (b) b))
|
||||
(array? c) (let (
|
||||
tests (array and (array array? access) (array = (len c) (array len access)))
|
||||
(tests body_func) ((rec-lambda recurse (tests body_func i) (if (= i (len c))
|
||||
(array tests body_func)
|
||||
(let ( (inner_test inner_body_func) (evaluate_case (array idx access i) (idx c i)) )
|
||||
(recurse (concat tests (array inner_test))
|
||||
(lambda (b) (body_func (inner_body_func b)))
|
||||
(+ i 1)))))
|
||||
tests (lambda (b) b) 0)
|
||||
) (array tests body_func))
|
||||
true (array (array = access c) (lambda (b) b))
|
||||
))
|
||||
helper (rec-lambda helper (x_sym cases i) (cond (< i (- (len cases) 1)) (let ( (test body_func) (evaluate_case x_sym (idx cases i)) )
|
||||
(concat (array test (body_func (idx cases (+ i 1)))) (helper x_sym cases (+ i 2))))
|
||||
true (array true (array error "none matched"))))
|
||||
) (vau de (x & cases) (eval (array let (array '___MATCH_SYM x) (concat (array cond) (helper '___MATCH_SYM cases 0))) de)))
|
||||
|
||||
|
||||
Var (lambda (x) (array 'Var x))
|
||||
Val (lambda (x) (array 'Val x))
|
||||
Add (lambda (l r) (array 'Add l r))
|
||||
Mul (lambda (l r) (array 'Mul l r))
|
||||
|
||||
max (lambda (a b) (if (> a b) a b))
|
||||
|
||||
mk_expr (rec-lambda mk_expr (n v)
|
||||
(if (= n 0)
|
||||
(if (= v 0) (Var 1) (Val v))
|
||||
(Add (mk_expr (- n 1) (+ v 1)) (mk_expr (- n 1) (max (- v 1) 0)))))
|
||||
|
||||
append_add (rec-lambda append_add (e0 e3) (match e0
|
||||
('Add e1 e2) (Add e1 (append_add e2 e3))
|
||||
_ (Add e0 e3)
|
||||
))
|
||||
|
||||
append_mul (rec-lambda append_mul (e0 e3) (match e0
|
||||
('Mul e1 e2) (Mul e1 (append_mul e2 e3))
|
||||
_ (Mul e0 e3)
|
||||
))
|
||||
|
||||
reassoc (rec-lambda reassoc (e) (match e
|
||||
('Add e1 e2) (append_add (reassoc e1) (reassoc e2))
|
||||
('Mul e1 e2) (append_mul (reassoc e1) (reassoc e2))
|
||||
x x
|
||||
))
|
||||
|
||||
cfold (rec-lambda cfold (e) (match e
|
||||
('Add l r) (let (lp (cfold l)
|
||||
rp (cfold r))
|
||||
(match lp
|
||||
('Val lpv) (match rp
|
||||
('Val rpv) (Val (+ lpv rpv))
|
||||
('Add f ('Val b)) (Add (Val (+ lpv b)) f)
|
||||
('Add ('Val b) f) (Add (Val (+ lpv b)) f)
|
||||
rpo (Add lp rpo))
|
||||
lpo (Add lpo rp)))
|
||||
('Mul l r) (let (lp (cfold l)
|
||||
rp (cfold r))
|
||||
(match lp
|
||||
('Val lpv) (match rp
|
||||
('Val rpv) (Val (* lpv rpv))
|
||||
('Mul f ('Val b)) (Mul (Val (* lpv b)) f)
|
||||
('Mul ('Val b) f) (Mul (Val (* lpv b)) f)
|
||||
rpo (Mul lp rpo))
|
||||
lpo (Mul lpo rp)))
|
||||
x x
|
||||
))
|
||||
|
||||
eval (rec-lambda eval (e) (match e
|
||||
('Var x) 0
|
||||
('Val v) v
|
||||
('Add l r) (+ (eval l) (eval r))
|
||||
('Mul l r) (* (eval l) (eval r))
|
||||
))
|
||||
|
||||
monad (array 'write 1 (str "running cfold") (vau (written code)
|
||||
(array 'args (vau (args code)
|
||||
(array 'exit (let (
|
||||
e (mk_expr (read-string (idx args 1)) 1)
|
||||
v1 (eval e)
|
||||
v2 (eval (cfold (reassoc e)))
|
||||
_ (log v1)
|
||||
_ (log v2)
|
||||
) 0))
|
||||
))
|
||||
))
|
||||
|
||||
) monad)
|
||||
; end of all lets
|
||||
))))))
|
||||
; impl of let1
|
||||
)) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de)))
|
||||
; impl of quote
|
||||
)) (vau (x5) x5))
|
||||
BIN
koka_bench/kraken/csc_out.wasm
Normal file
BIN
koka_bench/kraken/csc_out.wasm
Normal file
Binary file not shown.
263
koka_bench/kraken/deriv.kp
Normal file
263
koka_bench/kraken/deriv.kp
Normal file
@@ -0,0 +1,263 @@
|
||||
((wrap (vau root_env (quote)
|
||||
((wrap (vau (let1)
|
||||
(let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se)))
|
||||
(let1 current-env (vau de () de)
|
||||
(let1 cons (lambda (h t) (concat (array h) t))
|
||||
(let1 Y (lambda (f3)
|
||||
((lambda (x1) (x1 x1))
|
||||
(lambda (x2) (f3 (wrap (vau app_env (& y) (lapply (x2 x2) y app_env)))))))
|
||||
(let1 vY (lambda (f)
|
||||
((lambda (x3) (x3 x3))
|
||||
(lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1))))))
|
||||
(let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2)
|
||||
true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2)))))
|
||||
(let (
|
||||
lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args)))))
|
||||
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
|
||||
if (vau de (con than & else) (eval (array cond con than
|
||||
true (cond (> (len else) 0) (idx else 0)
|
||||
true false)) de))
|
||||
|
||||
map (lambda (f5 l5)
|
||||
(let (helper (rec-lambda recurse (f4 l4 n4 i4)
|
||||
(cond (= i4 (len l4)) n4
|
||||
(<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array
|
||||
(f4 (idx l4 (+ i4 0)))
|
||||
(f4 (idx l4 (+ i4 1)))
|
||||
(f4 (idx l4 (+ i4 2)))
|
||||
(f4 (idx l4 (+ i4 3)))
|
||||
)) (+ i4 4))
|
||||
true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1)))))
|
||||
(helper f5 l5 (array) 0)))
|
||||
|
||||
|
||||
map_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(cond (= i (len l)) n
|
||||
(<= i (- (len l) 4)) (recurse f l (concat n (array
|
||||
(f (+ i 0) (idx l (+ i 0)))
|
||||
(f (+ i 1) (idx l (+ i 1)))
|
||||
(f (+ i 2) (idx l (+ i 2)))
|
||||
(f (+ i 3) (idx l (+ i 3)))
|
||||
)) (+ i 4))
|
||||
true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
|
||||
filter_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1))
|
||||
(recurse f l n (+ i 1))))))
|
||||
(helper f l (array) 0)))
|
||||
filter (lambda (f l) (filter_i (lambda (i x) (f x)) l))
|
||||
|
||||
; Huge thanks to Oleg Kiselyov for his fantastic website
|
||||
; http://okmij.org/ftp/Computation/fixed-point-combinators.html
|
||||
Y* (lambda (& l)
|
||||
((lambda (u) (u u))
|
||||
(lambda (p)
|
||||
(map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l))))
|
||||
vY* (lambda (& l)
|
||||
((lambda (u) (u u))
|
||||
(lambda (p)
|
||||
(map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l))))
|
||||
|
||||
let-rec (vau de (name_func body)
|
||||
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
|
||||
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
|
||||
overwrite_name (idx name_func (- (len name_func) 2)))
|
||||
(eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs)))
|
||||
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
|
||||
body) de)))
|
||||
let-vrec (vau de (name_func body)
|
||||
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
|
||||
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
|
||||
overwrite_name (idx name_func (- (len name_func) 2)))
|
||||
(eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs)))
|
||||
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
|
||||
body) de)))
|
||||
|
||||
flat_map (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(recurse f l (concat n (f (idx l i))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
flat_map_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(recurse f l (concat n (f i (idx l i))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
|
||||
; with all this, we make a destrucutring-capable let
|
||||
let (let (
|
||||
destructure_helper (rec-lambda recurse (vs i r)
|
||||
(cond (= (len vs) i) r
|
||||
(array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i)))
|
||||
new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i))
|
||||
)
|
||||
(recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1))))))
|
||||
true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2))))
|
||||
))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de)))
|
||||
|
||||
; and a destructuring-capable lambda!
|
||||
only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true
|
||||
(symbol? (idx a i)) (recurse a (+ i 1))
|
||||
true false))
|
||||
|
||||
; Note that if macro_helper is inlined, the mapping lambdas will close over
|
||||
; se, and then not be able to be taken in as values to the maps, and the vau
|
||||
; will fail to partially evaluate away.
|
||||
lambda (let (macro_helper (lambda (p b) (let (
|
||||
sym_params (map (lambda (param) (if (symbol? param) param
|
||||
(str-to-symbol (str param)))) p)
|
||||
body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b)
|
||||
) (array vau sym_params body))))
|
||||
(vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se)
|
||||
(wrap (eval (macro_helper p b) se)))))
|
||||
|
||||
; and rec-lambda - yes it's the same definition again
|
||||
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
|
||||
|
||||
nil (array)
|
||||
not (lambda (x) (if x false true))
|
||||
or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false
|
||||
(= (+ 1 i) (len bs)) (idx bs i)
|
||||
true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1)))))))
|
||||
(vau se (& bs) (eval (macro_helper bs 0) se)))
|
||||
and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true
|
||||
(= (+ 1 i) (len bs)) (idx bs i)
|
||||
true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp)))))
|
||||
(vau se (& bs) (eval (macro_helper bs 0) se)))
|
||||
|
||||
|
||||
|
||||
foldl (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
|
||||
(recurse f (lapply f (cons z (map (lambda (x) (idx x i)) vs))) vs (+ i 1)))))
|
||||
(lambda (f z & vs) (helper f z vs 0)))
|
||||
foldr (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
|
||||
(lapply f (cons (recurse f z vs (+ i 1)) (map (lambda (x) (idx x i)) vs))))))
|
||||
(lambda (f z & vs) (helper f z vs 0)))
|
||||
reverse (lambda (x) (foldl (lambda (acc i) (cons i acc)) (array) x))
|
||||
zip (lambda (& xs) (lapply foldr (concat (array (lambda (a & ys) (cons ys a)) (array)) xs)))
|
||||
|
||||
match (let (
|
||||
evaluate_case (rec-lambda evaluate_case (access c) (cond
|
||||
(symbol? c) (array true (lambda (b) (array let (array c access) b)))
|
||||
(and (array? c) (= 2 (len c)) (= 'unquote (idx c 0))) (array (array = access (idx c 1)) (lambda (b) b))
|
||||
(and (array? c) (= 2 (len c)) (= 'quote (idx c 0))) (array (array = access c) (lambda (b) b))
|
||||
(array? c) (let (
|
||||
tests (array and (array array? access) (array = (len c) (array len access)))
|
||||
(tests body_func) ((rec-lambda recurse (tests body_func i) (if (= i (len c))
|
||||
(array tests body_func)
|
||||
(let ( (inner_test inner_body_func) (evaluate_case (array idx access i) (idx c i)) )
|
||||
(recurse (concat tests (array inner_test))
|
||||
(lambda (b) (body_func (inner_body_func b)))
|
||||
(+ i 1)))))
|
||||
tests (lambda (b) b) 0)
|
||||
) (array tests body_func))
|
||||
true (array (array = access c) (lambda (b) b))
|
||||
))
|
||||
helper (rec-lambda helper (x_sym cases i) (cond (< i (- (len cases) 1)) (let ( (test body_func) (evaluate_case x_sym (idx cases i)) )
|
||||
(concat (array test (body_func (idx cases (+ i 1)))) (helper x_sym cases (+ i 2))))
|
||||
true (array true (array error "none matched"))))
|
||||
) (vau de (x & cases) (eval (array let (array '___MATCH_SYM x) (concat (array cond) (helper '___MATCH_SYM cases 0))) de)))
|
||||
|
||||
|
||||
Var (lambda (x) (array 'Var x))
|
||||
Val (lambda (x) (array 'Val x))
|
||||
Add (lambda (l r) (array 'Add l r))
|
||||
Mul (lambda (l r) (array 'Mul l r))
|
||||
Pow (lambda (l r) (array 'Pow l r))
|
||||
Ln (lambda (e) (array 'Ln e))
|
||||
|
||||
pown_helper (rec-lambda pown_helper (a b acc) (if (= b 0) acc
|
||||
(pown_helper a (- b 1) (* a acc))))
|
||||
pown (lambda (a b) (pown_helper a b 1))
|
||||
|
||||
add (rec-lambda add (n0 m0) (match (array n0 m0)
|
||||
(('Val n) ('Val m)) (Val (+ n m))
|
||||
(('Val 0) f) f
|
||||
(f ('Val 0)) f
|
||||
(f ('Val n)) (add (Val n) f)
|
||||
(('Val n) ('Add ('Val m) f)) (add (Val (+ n m)) f)
|
||||
(f ('Add ('Val n) g)) (add (Val n) (add f g))
|
||||
(('Add f g) h) (add f (add g h))
|
||||
(f g) (Add f g)
|
||||
))
|
||||
|
||||
mul (rec-lambda mul (n0 m0) (match (array n0 m0)
|
||||
(('Val n) ('Val m)) (Val (* n m))
|
||||
(('Val 0) _) (Val 0)
|
||||
(_ ('Val 0)) (Val 0)
|
||||
(f ('Val 1)) f
|
||||
(('Val 1) f) f
|
||||
|
||||
(f ('Val n)) (mul (Val n) f)
|
||||
(('Val n) ('Mul ('Val m) f)) (mul (Val (* n m)) f)
|
||||
(f ('Mul ('Val n) g)) (mul (Val n) (mul f g))
|
||||
(('Mul f g) h) (mul f (mul g h))
|
||||
(f g) (Mul f g)
|
||||
))
|
||||
|
||||
powr (lambda (m0 n0) (match (array m0 n0)
|
||||
(('Val m) ('Val n)) (Val (pown m n))
|
||||
(_ ('Val 0)) (Val 1)
|
||||
(f ('Val 1)) f
|
||||
(('Val 0) _) (Val 0)
|
||||
(f g) (Pow f g)
|
||||
))
|
||||
|
||||
ln (lambda (n) (match n
|
||||
('Val 1) (Val 0)
|
||||
f (Ln f)
|
||||
))
|
||||
|
||||
d (rec-lambda d (x e) (match e
|
||||
('Val _) (Val 0)
|
||||
('Var y) (if (= x y) (Val 1) (Val 0))
|
||||
('Add f g) (add (d x f) (d x g))
|
||||
('Mul f g) (add (mul f (d x g)) (mul g (d x f)))
|
||||
('Pow f g) (mul (powr f g) (add (mul (mul g (d x f)) (powr f (Val -1))) (mul (ln f) (d x g))))
|
||||
('Ln f) (mul (d x f) (powr f (Val -1)))
|
||||
))
|
||||
|
||||
count (rec-lambda count (e) (match e
|
||||
('Val _) 1
|
||||
('Var y) 1
|
||||
('Add f g) (+ (count f) (count g))
|
||||
('Mul f g) (+ (count f) (count g))
|
||||
('Pow f g) (+ (count f) (count g))
|
||||
('Ln f) (count f)
|
||||
))
|
||||
|
||||
nest_aux (rec-lambda nest_aux (s f n x) (if (= n 0) x
|
||||
(nest_aux s f (- n 1) (f (- s n) x))))
|
||||
nest (lambda (f n e) (nest_aux n f n e))
|
||||
|
||||
deriv (lambda (i f) (let (d (d "x" f)
|
||||
_ (log (+ i 1) " count: " (count d))
|
||||
) d))
|
||||
|
||||
|
||||
monad (array 'write 1 (str "running deriv") (vau (written code)
|
||||
(array 'args (vau (args code)
|
||||
(array 'exit (let (
|
||||
n (read-string (idx args 1))
|
||||
x (Var "x")
|
||||
f (powr x x)
|
||||
_ (log (nest deriv n f))
|
||||
_ (log "done")
|
||||
) 0))
|
||||
))
|
||||
))
|
||||
|
||||
) monad)
|
||||
; end of all lets
|
||||
))))))
|
||||
; impl of let1
|
||||
)) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de)))
|
||||
; impl of quote
|
||||
)) (vau (x5) x5))
|
||||
210
koka_bench/kraken/nqueens.kp
Normal file
210
koka_bench/kraken/nqueens.kp
Normal file
@@ -0,0 +1,210 @@
|
||||
((wrap (vau root_env (quote)
|
||||
((wrap (vau (let1)
|
||||
(let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se)))
|
||||
(let1 current-env (vau de () de)
|
||||
(let1 cons (lambda (h t) (concat (array h) t))
|
||||
(let1 Y (lambda (f3)
|
||||
((lambda (x1) (x1 x1))
|
||||
(lambda (x2) (f3 (wrap (vau app_env (& y) (lapply (x2 x2) y app_env)))))))
|
||||
(let1 vY (lambda (f)
|
||||
((lambda (x3) (x3 x3))
|
||||
(lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1))))))
|
||||
(let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2)
|
||||
true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2)))))
|
||||
(let (
|
||||
lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args)))))
|
||||
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
|
||||
if (vau de (con than & else) (eval (array cond con than
|
||||
true (cond (> (len else) 0) (idx else 0)
|
||||
true false)) de))
|
||||
|
||||
map (lambda (f5 l5)
|
||||
(let (helper (rec-lambda recurse (f4 l4 n4 i4)
|
||||
(cond (= i4 (len l4)) n4
|
||||
(<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array
|
||||
(f4 (idx l4 (+ i4 0)))
|
||||
(f4 (idx l4 (+ i4 1)))
|
||||
(f4 (idx l4 (+ i4 2)))
|
||||
(f4 (idx l4 (+ i4 3)))
|
||||
)) (+ i4 4))
|
||||
true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1)))))
|
||||
(helper f5 l5 (array) 0)))
|
||||
|
||||
|
||||
map_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(cond (= i (len l)) n
|
||||
(<= i (- (len l) 4)) (recurse f l (concat n (array
|
||||
(f (+ i 0) (idx l (+ i 0)))
|
||||
(f (+ i 1) (idx l (+ i 1)))
|
||||
(f (+ i 2) (idx l (+ i 2)))
|
||||
(f (+ i 3) (idx l (+ i 3)))
|
||||
)) (+ i 4))
|
||||
true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
|
||||
filter_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1))
|
||||
(recurse f l n (+ i 1))))))
|
||||
(helper f l (array) 0)))
|
||||
filter (lambda (f l) (filter_i (lambda (i x) (f x)) l))
|
||||
|
||||
; Huge thanks to Oleg Kiselyov for his fantastic website
|
||||
; http://okmij.org/ftp/Computation/fixed-point-combinators.html
|
||||
Y* (lambda (& l)
|
||||
((lambda (u) (u u))
|
||||
(lambda (p)
|
||||
(map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l))))
|
||||
vY* (lambda (& l)
|
||||
((lambda (u) (u u))
|
||||
(lambda (p)
|
||||
(map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l))))
|
||||
|
||||
let-rec (vau de (name_func body)
|
||||
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
|
||||
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
|
||||
overwrite_name (idx name_func (- (len name_func) 2)))
|
||||
(eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs)))
|
||||
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
|
||||
body) de)))
|
||||
let-vrec (vau de (name_func body)
|
||||
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
|
||||
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
|
||||
overwrite_name (idx name_func (- (len name_func) 2)))
|
||||
(eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs)))
|
||||
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
|
||||
body) de)))
|
||||
|
||||
flat_map (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(recurse f l (concat n (f (idx l i))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
flat_map_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(recurse f l (concat n (f i (idx l i))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
|
||||
; with all this, we make a destrucutring-capable let
|
||||
let (let (
|
||||
destructure_helper (rec-lambda recurse (vs i r)
|
||||
(cond (= (len vs) i) r
|
||||
(array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i)))
|
||||
new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i))
|
||||
)
|
||||
(recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1))))))
|
||||
true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2))))
|
||||
))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de)))
|
||||
|
||||
; and a destructuring-capable lambda!
|
||||
only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true
|
||||
(symbol? (idx a i)) (recurse a (+ i 1))
|
||||
true false))
|
||||
|
||||
; Note that if macro_helper is inlined, the mapping lambdas will close over
|
||||
; se, and then not be able to be taken in as values to the maps, and the vau
|
||||
; will fail to partially evaluate away.
|
||||
lambda (let (macro_helper (lambda (p b) (let (
|
||||
sym_params (map (lambda (param) (if (symbol? param) param
|
||||
(str-to-symbol (str param)))) p)
|
||||
body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b)
|
||||
) (array vau sym_params body))))
|
||||
(vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se)
|
||||
(wrap (eval (macro_helper p b) se)))))
|
||||
|
||||
; and rec-lambda - yes it's the same definition again
|
||||
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
|
||||
|
||||
nil (array)
|
||||
not (lambda (x) (if x false true))
|
||||
or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false
|
||||
(= (+ 1 i) (len bs)) (idx bs i)
|
||||
true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1)))))))
|
||||
(vau se (& bs) (eval (macro_helper bs 0) se)))
|
||||
and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true
|
||||
(= (+ 1 i) (len bs)) (idx bs i)
|
||||
true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp)))))
|
||||
(vau se (& bs) (eval (macro_helper bs 0) se)))
|
||||
|
||||
|
||||
|
||||
foldl (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
|
||||
(recurse f (lapply f (cons z (map (lambda (x) (idx x i)) vs))) vs (+ i 1)))))
|
||||
(lambda (f z & vs) (helper f z vs 0)))
|
||||
foldr (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
|
||||
(lapply f (cons (recurse f z vs (+ i 1)) (map (lambda (x) (idx x i)) vs))))))
|
||||
(lambda (f z & vs) (helper f z vs 0)))
|
||||
reverse (lambda (x) (foldl (lambda (acc i) (cons i acc)) (array) x))
|
||||
zip (lambda (& xs) (lapply foldr (concat (array (lambda (a & ys) (cons ys a)) (array)) xs)))
|
||||
|
||||
match (let (
|
||||
evaluate_case (rec-lambda evaluate_case (access c) (cond
|
||||
(symbol? c) (array true (lambda (b) (array let (array c access) b)))
|
||||
(and (array? c) (= 2 (len c)) (= 'unquote (idx c 0))) (array (array = access (idx c 1)) (lambda (b) b))
|
||||
(and (array? c) (= 2 (len c)) (= 'quote (idx c 0))) (array (array = access c) (lambda (b) b))
|
||||
(array? c) (let (
|
||||
tests (array and (array array? access) (array = (len c) (array len access)))
|
||||
(tests body_func) ((rec-lambda recurse (tests body_func i) (if (= i (len c))
|
||||
(array tests body_func)
|
||||
(let ( (inner_test inner_body_func) (evaluate_case (array idx access i) (idx c i)) )
|
||||
(recurse (concat tests (array inner_test))
|
||||
(lambda (b) (body_func (inner_body_func b)))
|
||||
(+ i 1)))))
|
||||
tests (lambda (b) b) 0)
|
||||
) (array tests body_func))
|
||||
true (array (array = access c) (lambda (b) b))
|
||||
))
|
||||
helper (rec-lambda helper (x_sym cases i) (cond (< i (- (len cases) 1)) (let ( (test body_func) (evaluate_case x_sym (idx cases i)) )
|
||||
(concat (array test (body_func (idx cases (+ i 1)))) (helper x_sym cases (+ i 2))))
|
||||
true (array true (array error "none matched"))))
|
||||
) (vau de (x & cases) (eval (array let (array '___MATCH_SYM x) (concat (array cond) (helper '___MATCH_SYM cases 0))) de)))
|
||||
|
||||
|
||||
safe (rec-lambda safe (queen diag i xs)
|
||||
(if (= i (len xs))
|
||||
true
|
||||
(let ( q (idx xs i) )
|
||||
(and (!= queen q)
|
||||
(!= queen (+ q diag))
|
||||
(!= queen (- q diag))
|
||||
(safe queen (+ diag 1) (+ i 1) xs)))))
|
||||
append-safe (rec-lambda append-safe (queen xs xss)
|
||||
(cond (<= queen 0) xss
|
||||
(safe queen 1 0 xs) (append-safe (- queen 1)
|
||||
xs
|
||||
(cons (cons queen xs) xss))
|
||||
true (append-safe (- queen 1) xs xss)))
|
||||
extend (rec-lambda extend (queen acc xss i)
|
||||
(if (= i (len xss))
|
||||
acc
|
||||
(extend queen
|
||||
(append-safe queen (idx xss i) acc)
|
||||
xss
|
||||
(+ i 1))))
|
||||
|
||||
find-solutions (rec-lambda find-solutions (n queen)
|
||||
(if (= 0 queen)
|
||||
(array nil)
|
||||
(extend n nil (find-solutions n (- queen 1)) 0)))
|
||||
nqueens (lambda (n) (len (find-solutions n n)))
|
||||
|
||||
|
||||
monad (array 'write 1 (str "running nqueens") (vau (written code)
|
||||
(array 'args (vau (args code)
|
||||
(array 'exit (log (nqueens (read-string (idx args 1)))))
|
||||
))
|
||||
))
|
||||
|
||||
) monad)
|
||||
; end of all lets
|
||||
))))))
|
||||
; impl of let1
|
||||
)) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de)))
|
||||
; impl of quote
|
||||
)) (vau (x5) x5))
|
||||
225
koka_bench/kraken/rbtree-opt.kp
Normal file
225
koka_bench/kraken/rbtree-opt.kp
Normal file
@@ -0,0 +1,225 @@
|
||||
((wrap (vau root_env (quote)
|
||||
((wrap (vau (let1)
|
||||
(let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se)))
|
||||
(let1 current-env (vau de () de)
|
||||
(let1 cons (lambda (h t) (concat (array h) t))
|
||||
(let1 Y (lambda (f3)
|
||||
((lambda (x1) (x1 x1))
|
||||
(lambda (x2) (f3 (wrap (vau app_env (& y) (lapply (x2 x2) y app_env)))))))
|
||||
(let1 vY (lambda (f)
|
||||
((lambda (x3) (x3 x3))
|
||||
(lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1))))))
|
||||
(let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2)
|
||||
true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2)))))
|
||||
(let (
|
||||
lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args)))))
|
||||
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
|
||||
if (vau de (con than & else) (eval (array cond con than
|
||||
true (cond (> (len else) 0) (idx else 0)
|
||||
true false)) de))
|
||||
|
||||
map (lambda (f5 l5)
|
||||
(let (helper (rec-lambda recurse (f4 l4 n4 i4)
|
||||
(cond (= i4 (len l4)) n4
|
||||
(<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array
|
||||
(f4 (idx l4 (+ i4 0)))
|
||||
(f4 (idx l4 (+ i4 1)))
|
||||
(f4 (idx l4 (+ i4 2)))
|
||||
(f4 (idx l4 (+ i4 3)))
|
||||
)) (+ i4 4))
|
||||
true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1)))))
|
||||
(helper f5 l5 (array) 0)))
|
||||
|
||||
|
||||
map_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(cond (= i (len l)) n
|
||||
(<= i (- (len l) 4)) (recurse f l (concat n (array
|
||||
(f (+ i 0) (idx l (+ i 0)))
|
||||
(f (+ i 1) (idx l (+ i 1)))
|
||||
(f (+ i 2) (idx l (+ i 2)))
|
||||
(f (+ i 3) (idx l (+ i 3)))
|
||||
)) (+ i 4))
|
||||
true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
|
||||
filter_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1))
|
||||
(recurse f l n (+ i 1))))))
|
||||
(helper f l (array) 0)))
|
||||
filter (lambda (f l) (filter_i (lambda (i x) (f x)) l))
|
||||
|
||||
; Huge thanks to Oleg Kiselyov for his fantastic website
|
||||
; http://okmij.org/ftp/Computation/fixed-point-combinators.html
|
||||
Y* (lambda (& l)
|
||||
((lambda (u) (u u))
|
||||
(lambda (p)
|
||||
(map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l))))
|
||||
vY* (lambda (& l)
|
||||
((lambda (u) (u u))
|
||||
(lambda (p)
|
||||
(map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l))))
|
||||
|
||||
let-rec (vau de (name_func body)
|
||||
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
|
||||
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
|
||||
overwrite_name (idx name_func (- (len name_func) 2)))
|
||||
(eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs)))
|
||||
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
|
||||
body) de)))
|
||||
let-vrec (vau de (name_func body)
|
||||
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
|
||||
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
|
||||
overwrite_name (idx name_func (- (len name_func) 2)))
|
||||
(eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs)))
|
||||
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
|
||||
body) de)))
|
||||
|
||||
flat_map (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(recurse f l (concat n (f (idx l i))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
flat_map_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(recurse f l (concat n (f i (idx l i))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
|
||||
; with all this, we make a destrucutring-capable let
|
||||
let (let (
|
||||
destructure_helper (rec-lambda recurse (vs i r)
|
||||
(cond (= (len vs) i) r
|
||||
(array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i)))
|
||||
new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i))
|
||||
)
|
||||
(recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1))))))
|
||||
true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2))))
|
||||
))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de)))
|
||||
|
||||
; and a destructuring-capable lambda!
|
||||
only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true
|
||||
(symbol? (idx a i)) (recurse a (+ i 1))
|
||||
true false))
|
||||
|
||||
; Note that if macro_helper is inlined, the mapping lambdas will close over
|
||||
; se, and then not be able to be taken in as values to the maps, and the vau
|
||||
; will fail to partially evaluate away.
|
||||
lambda (let (macro_helper (lambda (p b) (let (
|
||||
sym_params (map (lambda (param) (if (symbol? param) param
|
||||
(str-to-symbol (str param)))) p)
|
||||
body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b)
|
||||
) (array vau sym_params body))))
|
||||
(vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se)
|
||||
(wrap (eval (macro_helper p b) se)))))
|
||||
|
||||
; and rec-lambda - yes it's the same definition again
|
||||
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
|
||||
|
||||
nil (array)
|
||||
not (lambda (x) (if x false true))
|
||||
or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false
|
||||
(= (+ 1 i) (len bs)) (idx bs i)
|
||||
true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1)))))))
|
||||
(vau se (& bs) (eval (macro_helper bs 0) se)))
|
||||
and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true
|
||||
(= (+ 1 i) (len bs)) (idx bs i)
|
||||
true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp)))))
|
||||
(vau se (& bs) (eval (macro_helper bs 0) se)))
|
||||
|
||||
|
||||
|
||||
foldl (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
|
||||
(recurse f (lapply f (cons z (map (lambda (x) (idx x i)) vs))) vs (+ i 1)))))
|
||||
(lambda (f z & vs) (helper f z vs 0)))
|
||||
foldr (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
|
||||
(lapply f (cons (recurse f z vs (+ i 1)) (map (lambda (x) (idx x i)) vs))))))
|
||||
(lambda (f z & vs) (helper f z vs 0)))
|
||||
reverse (lambda (x) (foldl (lambda (acc i) (cons i acc)) (array) x))
|
||||
zip (lambda (& xs) (lapply foldr (concat (array (lambda (a & ys) (cons ys a)) (array)) xs)))
|
||||
|
||||
match (let (
|
||||
evaluate_case (rec-lambda evaluate_case (access c) (cond
|
||||
(symbol? c) (array true (lambda (b) (array let (array c access) b)))
|
||||
(and (array? c) (= 2 (len c)) (= 'unquote (idx c 0))) (array (array = access (idx c 1)) (lambda (b) b))
|
||||
(and (array? c) (= 2 (len c)) (= 'quote (idx c 0))) (array (array = access c) (lambda (b) b))
|
||||
(array? c) (let (
|
||||
tests (array and (array array? access) (array = (len c) (array len access)))
|
||||
(tests body_func) ((rec-lambda recurse (tests body_func i) (if (= i (len c))
|
||||
(array tests body_func)
|
||||
(let ( (inner_test inner_body_func) (evaluate_case (array idx access i) (idx c i)) )
|
||||
(recurse (concat tests (array inner_test))
|
||||
(lambda (b) (body_func (inner_body_func b)))
|
||||
(+ i 1)))))
|
||||
tests (lambda (b) b) 0)
|
||||
) (array tests body_func))
|
||||
true (array (array = access c) (lambda (b) b))
|
||||
))
|
||||
helper (rec-lambda helper (x_sym cases i) (cond (< i (- (len cases) 1)) (let ( (test body_func) (evaluate_case x_sym (idx cases i)) )
|
||||
(concat (array test (body_func (idx cases (+ i 1)))) (helper x_sym cases (+ i 2))))
|
||||
true (array true (array error "none matched"))))
|
||||
) (vau de (x & cases) (eval (array let (array '___MATCH_SYM x) (concat (array cond) (helper '___MATCH_SYM cases 0))) de)))
|
||||
|
||||
; This is based on https://www.cs.cornell.edu/courses/cs3110/2020sp/a4/deletion.pdf
|
||||
; and the figure references refer to it
|
||||
; Insert is taken from the same paper, but is origional to Okasaki, I belive
|
||||
|
||||
; The tree has been modified slightly to take in a comparison function
|
||||
; and override if insert replaces or not to allow use as a set or as a map
|
||||
|
||||
; I think this is actually pretty cool - instead of having a bunch of seperate ['B]
|
||||
; be our leaf node, we use ['B] with all nils. This allows us to not use -B, as
|
||||
; both leaf and non-leaf 'BB has the same structure with children! Also, we make
|
||||
; sure to use empty itself so we don't make a ton of empties...
|
||||
empty (array 'B nil nil nil)
|
||||
E empty
|
||||
EE (array 'BB nil nil nil)
|
||||
|
||||
generic-foldl (rec-lambda recurse (f z t) (match t
|
||||
,E z
|
||||
(c a x b) (recurse f (f (recurse f z a) x) b)))
|
||||
|
||||
blacken (lambda (t) (match t
|
||||
('R a x b) (array 'B a x b)
|
||||
t t))
|
||||
balance (lambda (t) (match t
|
||||
; figures 1 and 2
|
||||
('B ('R ('R a x b) y c) z d) (array 'R (array 'B a x b) y (array 'B c z d))
|
||||
('B ('R a x ('R b y c)) z d) (array 'R (array 'B a x b) y (array 'B c z d))
|
||||
('B a x ('R ('R b y c) z d)) (array 'R (array 'B a x b) y (array 'B c z d))
|
||||
('B a x ('R b y ('R c z d))) (array 'R (array 'B a x b) y (array 'B c z d))
|
||||
; figure 8, double black cases
|
||||
('BB ('R a x ('R b y c)) z d) (array 'B (array 'B a x b) y (array 'B c z d))
|
||||
('BB a x ('R ('R b y c) z d)) (array 'B (array 'B a x b) y (array 'B c z d))
|
||||
; already balenced
|
||||
t t))
|
||||
map-insert (lambda (t k v) (blacken ((rec-lambda ins (t) (match t
|
||||
,E (array 'R t (array k v) t)
|
||||
(c a x b) (cond (< k (idx x 0)) (balance (array c (ins a) x b))
|
||||
(= k (idx x 0)) (array c a (array k v) b)
|
||||
true (balance (array c a x (ins b)))))) t)))
|
||||
|
||||
map-empty empty
|
||||
|
||||
make-test-tree (rec-lambda make-test-tree (n t) (cond (<= n 0) t
|
||||
true (make-test-tree (- n 1) (map-insert t n (= 0 (% n 10))))))
|
||||
reduce-test-tree (lambda (tree) (generic-foldl (lambda (a x) (if (idx x 1) (+ a 1) a)) 0 tree))
|
||||
|
||||
monad (array 'write 1 (str "running tree test") (vau (written code)
|
||||
(array 'args (vau (args code)
|
||||
(array 'exit (log (reduce-test-tree (make-test-tree (read-string (idx args 1)) map-empty))))
|
||||
))
|
||||
))
|
||||
|
||||
) monad)
|
||||
; end of all lets
|
||||
))))))
|
||||
; impl of let1
|
||||
)) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de)))
|
||||
; impl of quote
|
||||
)) (vau (x5) x5))
|
||||
309
koka_bench/kraken/rbtree.kp
Normal file
309
koka_bench/kraken/rbtree.kp
Normal file
@@ -0,0 +1,309 @@
|
||||
((wrap (vau root_env (quote)
|
||||
((wrap (vau (let1)
|
||||
(let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se)))
|
||||
(let1 current-env (vau de () de)
|
||||
(let1 cons (lambda (h t) (concat (array h) t))
|
||||
(let1 Y (lambda (f3)
|
||||
((lambda (x1) (x1 x1))
|
||||
(lambda (x2) (f3 (wrap (vau app_env (& y) (lapply (x2 x2) y app_env)))))))
|
||||
(let1 vY (lambda (f)
|
||||
((lambda (x3) (x3 x3))
|
||||
(lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1))))))
|
||||
(let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2)
|
||||
true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2)))))
|
||||
(let (
|
||||
lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args)))))
|
||||
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
|
||||
if (vau de (con than & else) (eval (array cond con than
|
||||
true (cond (> (len else) 0) (idx else 0)
|
||||
true false)) de))
|
||||
|
||||
map (lambda (f5 l5)
|
||||
(let (helper (rec-lambda recurse (f4 l4 n4 i4)
|
||||
(cond (= i4 (len l4)) n4
|
||||
(<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array
|
||||
(f4 (idx l4 (+ i4 0)))
|
||||
(f4 (idx l4 (+ i4 1)))
|
||||
(f4 (idx l4 (+ i4 2)))
|
||||
(f4 (idx l4 (+ i4 3)))
|
||||
)) (+ i4 4))
|
||||
true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1)))))
|
||||
(helper f5 l5 (array) 0)))
|
||||
|
||||
|
||||
map_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(cond (= i (len l)) n
|
||||
(<= i (- (len l) 4)) (recurse f l (concat n (array
|
||||
(f (+ i 0) (idx l (+ i 0)))
|
||||
(f (+ i 1) (idx l (+ i 1)))
|
||||
(f (+ i 2) (idx l (+ i 2)))
|
||||
(f (+ i 3) (idx l (+ i 3)))
|
||||
)) (+ i 4))
|
||||
true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
|
||||
filter_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1))
|
||||
(recurse f l n (+ i 1))))))
|
||||
(helper f l (array) 0)))
|
||||
filter (lambda (f l) (filter_i (lambda (i x) (f x)) l))
|
||||
|
||||
; Huge thanks to Oleg Kiselyov for his fantastic website
|
||||
; http://okmij.org/ftp/Computation/fixed-point-combinators.html
|
||||
Y* (lambda (& l)
|
||||
((lambda (u) (u u))
|
||||
(lambda (p)
|
||||
(map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l))))
|
||||
vY* (lambda (& l)
|
||||
((lambda (u) (u u))
|
||||
(lambda (p)
|
||||
(map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l))))
|
||||
|
||||
let-rec (vau de (name_func body)
|
||||
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
|
||||
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
|
||||
overwrite_name (idx name_func (- (len name_func) 2)))
|
||||
(eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs)))
|
||||
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
|
||||
body) de)))
|
||||
let-vrec (vau de (name_func body)
|
||||
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
|
||||
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
|
||||
overwrite_name (idx name_func (- (len name_func) 2)))
|
||||
(eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs)))
|
||||
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
|
||||
body) de)))
|
||||
|
||||
flat_map (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(recurse f l (concat n (f (idx l i))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
flat_map_i (lambda (f l)
|
||||
(let (helper (rec-lambda recurse (f l n i)
|
||||
(if (= i (len l))
|
||||
n
|
||||
(recurse f l (concat n (f i (idx l i))) (+ i 1)))))
|
||||
(helper f l (array) 0)))
|
||||
|
||||
; with all this, we make a destrucutring-capable let
|
||||
let (let (
|
||||
destructure_helper (rec-lambda recurse (vs i r)
|
||||
(cond (= (len vs) i) r
|
||||
(array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i)))
|
||||
new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i))
|
||||
)
|
||||
(recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1))))))
|
||||
true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2))))
|
||||
))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de)))
|
||||
|
||||
; and a destructuring-capable lambda!
|
||||
only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true
|
||||
(symbol? (idx a i)) (recurse a (+ i 1))
|
||||
true false))
|
||||
|
||||
; Note that if macro_helper is inlined, the mapping lambdas will close over
|
||||
; se, and then not be able to be taken in as values to the maps, and the vau
|
||||
; will fail to partially evaluate away.
|
||||
lambda (let (macro_helper (lambda (p b) (let (
|
||||
sym_params (map (lambda (param) (if (symbol? param) param
|
||||
(str-to-symbol (str param)))) p)
|
||||
body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b)
|
||||
) (array vau sym_params body))))
|
||||
(vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se)
|
||||
(wrap (eval (macro_helper p b) se)))))
|
||||
|
||||
; and rec-lambda - yes it's the same definition again
|
||||
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
|
||||
|
||||
nil (array)
|
||||
not (lambda (x) (if x false true))
|
||||
or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false
|
||||
(= (+ 1 i) (len bs)) (idx bs i)
|
||||
true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1)))))))
|
||||
(vau se (& bs) (eval (macro_helper bs 0) se)))
|
||||
and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true
|
||||
(= (+ 1 i) (len bs)) (idx bs i)
|
||||
true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp)))))
|
||||
(vau se (& bs) (eval (macro_helper bs 0) se)))
|
||||
|
||||
|
||||
|
||||
foldl (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
|
||||
(recurse f (lapply f (cons z (map (lambda (x) (idx x i)) vs))) vs (+ i 1)))))
|
||||
(lambda (f z & vs) (helper f z vs 0)))
|
||||
foldr (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
|
||||
(lapply f (cons (recurse f z vs (+ i 1)) (map (lambda (x) (idx x i)) vs))))))
|
||||
(lambda (f z & vs) (helper f z vs 0)))
|
||||
reverse (lambda (x) (foldl (lambda (acc i) (cons i acc)) (array) x))
|
||||
zip (lambda (& xs) (lapply foldr (concat (array (lambda (a & ys) (cons ys a)) (array)) xs)))
|
||||
|
||||
match (let (
|
||||
evaluate_case (rec-lambda evaluate_case (access c) (cond
|
||||
(symbol? c) (array true (lambda (b) (array let (array c access) b)))
|
||||
(and (array? c) (= 2 (len c)) (= 'unquote (idx c 0))) (array (array = access (idx c 1)) (lambda (b) b))
|
||||
(and (array? c) (= 2 (len c)) (= 'quote (idx c 0))) (array (array = access c) (lambda (b) b))
|
||||
(array? c) (let (
|
||||
tests (array and (array array? access) (array = (len c) (array len access)))
|
||||
(tests body_func) ((rec-lambda recurse (tests body_func i) (if (= i (len c))
|
||||
(array tests body_func)
|
||||
(let ( (inner_test inner_body_func) (evaluate_case (array idx access i) (idx c i)) )
|
||||
(recurse (concat tests (array inner_test))
|
||||
(lambda (b) (body_func (inner_body_func b)))
|
||||
(+ i 1)))))
|
||||
tests (lambda (b) b) 0)
|
||||
) (array tests body_func))
|
||||
true (array (array = access c) (lambda (b) b))
|
||||
))
|
||||
helper (rec-lambda helper (x_sym cases i) (cond (< i (- (len cases) 1)) (let ( (test body_func) (evaluate_case x_sym (idx cases i)) )
|
||||
(concat (array test (body_func (idx cases (+ i 1)))) (helper x_sym cases (+ i 2))))
|
||||
true (array true (array error "none matched"))))
|
||||
) (vau de (x & cases) (eval (array let (array '___MATCH_SYM x) (concat (array cond) (helper '___MATCH_SYM cases 0))) de)))
|
||||
|
||||
; This is based on https://www.cs.cornell.edu/courses/cs3110/2020sp/a4/deletion.pdf
|
||||
; and the figure references refer to it
|
||||
; Insert is taken from the same paper, but is origional to Okasaki, I belive
|
||||
|
||||
; The tree has been modified slightly to take in a comparison function
|
||||
; and override if insert replaces or not to allow use as a set or as a map
|
||||
|
||||
; I think this is actually pretty cool - instead of having a bunch of seperate ['B]
|
||||
; be our leaf node, we use ['B] with all nils. This allows us to not use -B, as
|
||||
; both leaf and non-leaf 'BB has the same structure with children! Also, we make
|
||||
; sure to use empty itself so we don't make a ton of empties...
|
||||
empty (array 'B nil nil nil)
|
||||
E empty
|
||||
EE (array 'BB nil nil nil)
|
||||
|
||||
size (rec-lambda recurse (t) (match t
|
||||
,E 0
|
||||
(c a x b) (+ 1 (recurse a) (recurse b))))
|
||||
|
||||
generic-foldl (rec-lambda recurse (f z t) (match t
|
||||
,E z
|
||||
(c a x b) (recurse f (f (recurse f z a) x) b)))
|
||||
|
||||
generic-contains? (rec-lambda recurse (t cmp v found not-found) (match t
|
||||
,E (not-found)
|
||||
(c a x b) (match (cmp v x) '< (recurse a cmp v found not-found)
|
||||
'= (found x)
|
||||
'> (recurse b cmp v found not-found))))
|
||||
blacken (lambda (t) (match t
|
||||
('R a x b) (array 'B a x b)
|
||||
t t))
|
||||
balance (lambda (t) (match t
|
||||
; figures 1 and 2
|
||||
('B ('R ('R a x b) y c) z d) (array 'R (array 'B a x b) y (array 'B c z d))
|
||||
('B ('R a x ('R b y c)) z d) (array 'R (array 'B a x b) y (array 'B c z d))
|
||||
('B a x ('R ('R b y c) z d)) (array 'R (array 'B a x b) y (array 'B c z d))
|
||||
('B a x ('R b y ('R c z d))) (array 'R (array 'B a x b) y (array 'B c z d))
|
||||
; figure 8, double black cases
|
||||
('BB ('R a x ('R b y c)) z d) (array 'B (array 'B a x b) y (array 'B c z d))
|
||||
('BB a x ('R ('R b y c) z d)) (array 'B (array 'B a x b) y (array 'B c z d))
|
||||
; already balenced
|
||||
t t))
|
||||
generic-insert (lambda (t cmp v replace) (let (
|
||||
ins (rec-lambda ins (t) (match t
|
||||
,E (array 'R t v t)
|
||||
(c a x b) (match (cmp v x) '< (balance (array c (ins a) x b))
|
||||
'= (if replace (array c a v b)
|
||||
t)
|
||||
'> (balance (array c a x (ins b))))))
|
||||
) (blacken (ins t))))
|
||||
|
||||
rotate (lambda (t) (match t
|
||||
; case 1, fig 6
|
||||
('R ('BB a x b) y ('B c z d)) (balance (array 'B (array 'R (array 'B a x b) y c) z d))
|
||||
('R ('B a x b) y ('BB c z d)) (balance (array 'B a x (array 'R b y (array 'B c z d))))
|
||||
; case 2, figure 7
|
||||
('B ('BB a x b) y ('B c z d)) (balance (array 'BB (array 'R (array 'B a x b) y c) z d))
|
||||
('B ('B a x b) y ('BB c z d)) (balance (array 'BB a x (array 'R b y (array 'B c z d))))
|
||||
; case 3, figure 9
|
||||
('B ('BB a w b) x ('R ('B c y d) z e)) (array 'B (balance (array 'B (array 'R (array 'B a w b) x c) y d)) z e)
|
||||
('B ('R a w ('B b x c)) y ('BB d z e)) (array 'B a w (balance (array 'B b x (array 'R c y (array 'B d z e)))))
|
||||
; fall through
|
||||
t t))
|
||||
|
||||
redden (lambda (t) (match t
|
||||
('B a x b) (if (and (= 'B (idx a 0)) (= 'B (idx b 0))) (array 'R a x b)
|
||||
t)
|
||||
t t))
|
||||
|
||||
min_delete (rec-lambda recurse (t) (match t
|
||||
,E (error "min_delete empty tree")
|
||||
('R ,E x ,E) (array x E)
|
||||
('B ,E x ,E) (array x EE)
|
||||
('B ,E x ('R a y b)) (array x (array 'B a y b))
|
||||
(c a x b) (let ((v ap) (recurse a)) (array v (rotate (array c ap x b))))))
|
||||
|
||||
generic-delete (lambda (t cmp v) (let (
|
||||
del (rec-lambda del (t v) (match t
|
||||
; figure 3
|
||||
,E t
|
||||
; figure 4
|
||||
('R ,E x ,E) (match (cmp v x) '= E
|
||||
_ t)
|
||||
('B ('R a x b) y ,E) (match (cmp v y) '< (rotate (array 'B (del (array 'R a x b) v) y E))
|
||||
'= (array 'B a x b)
|
||||
'> t)
|
||||
; figure 5
|
||||
('B ,E x ,E) (match (cmp v x) '= EE
|
||||
_ t)
|
||||
(c a x b) (match (cmp v x) '< (rotate (array c (del a v) x b))
|
||||
'= (let ((array vp bp) (min_delete b))
|
||||
(rotate (array c a vp bp)))
|
||||
'> (rotate (array c a x (del b v))))))
|
||||
) (del (redden t) v)))
|
||||
|
||||
set-cmp (lambda (a b) (cond (< a b) '<
|
||||
(= a b) '=
|
||||
true '>))
|
||||
set-empty empty
|
||||
set-foldl generic-foldl
|
||||
set-insert (lambda (t x) (generic-insert t set-cmp x false))
|
||||
set-contains? (lambda (t x) (generic-contains? t set-cmp x (lambda (f) true) (lambda () false)))
|
||||
set-remove (lambda (t x) (generic-delete t set-cmp x))
|
||||
|
||||
map-cmp (lambda (a b) (let (ak (idx a 0)
|
||||
bk (idx b 0))
|
||||
(cond (< ak bk) '<
|
||||
(= ak bk) '=
|
||||
true '>)))
|
||||
map-empty empty
|
||||
map-insert (lambda (t k v) (generic-insert t map-cmp (array k v) true))
|
||||
map-contains-key? (lambda (t k) (generic-contains? t map-cmp (array k nil) (lambda (f) true) (lambda () false)))
|
||||
map-get (lambda (t k) (generic-contains? t map-cmp (array k nil) (lambda (f) (idx f 1)) (lambda () (error (str "didn't find key " k " in map " t)))))
|
||||
map-get-or-default (lambda (t k d) (generic-contains? t map-cmp (array k nil) (lambda (f) (idx f 1)) (lambda () d)))
|
||||
map-get-with-default (lambda (t k d) (generic-contains? t map-cmp (array k nil) (lambda (f) (idx f 1)) (lambda () (d))))
|
||||
map-remove (lambda (t k) (generic-delete t map-cmp (array k nil)))
|
||||
|
||||
; This could be 2x as efficent by being implmented on generic instead of map,
|
||||
; as we wouldn't have to traverse once to find and once to insert
|
||||
multimap-empty map-empty
|
||||
multimap-insert (lambda (t k v) (map-insert t k (set-insert (map-get-or-default t k set-empty) v)))
|
||||
multimap-get (lambda (t k) (map-get-or-default t k set-empty))
|
||||
|
||||
|
||||
|
||||
make-test-tree (rec-lambda make-test-tree (n t) (cond (<= n 0) t
|
||||
true (make-test-tree (- n 1) (map-insert t n (= 0 (% n 10))))))
|
||||
reduce-test-tree (lambda (tree) (generic-foldl (lambda (a x) (if (idx x 1) (+ a 1) a)) 0 tree))
|
||||
|
||||
monad (array 'write 1 (str "running tree test") (vau (written code)
|
||||
(array 'args (vau (args code)
|
||||
(array 'exit (log (reduce-test-tree (make-test-tree (read-string (idx args 1)) map-empty))))
|
||||
))
|
||||
))
|
||||
|
||||
) monad)
|
||||
; end of all lets
|
||||
))))))
|
||||
; impl of let1
|
||||
)) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de)))
|
||||
; impl of quote
|
||||
)) (vau (x5) x5))
|
||||
17
working_files/fib.c
Normal file
17
working_files/fib.c
Normal file
@@ -0,0 +1,17 @@
|
||||
#include <stdio.h>
|
||||
|
||||
int fib(int n) {
|
||||
if (n == 0) {
|
||||
return 0;
|
||||
} else if (n == 1) {
|
||||
return 1;
|
||||
} else {
|
||||
return fib(n-1) + fib(n-2);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
int n = 27;
|
||||
printf("Fib(%d): %d\n", n, fib(n));
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user