Old .gitignore actually prevent the kraken versions of the benchmarks from being comitted, scarily enough - also some of the c fib tests

This commit is contained in:
Nathan Braswell
2022-05-18 01:28:49 -04:00
parent 34c6d01c31
commit 81a54b5a06
11 changed files with 1320 additions and 24 deletions

24
.gitignore vendored
View File

@@ -1,8 +1,6 @@
_site
build
build-ninja
*.comp
stats
*.swp
*.swm
*.swn
@@ -12,28 +10,6 @@ stats
*.swj
*.swk
*.png
*krakout*
kraklist.txt
.*.un~
papers
callgrind*
*.comp_new
*.comp_new.expr
*.comp_bac
bintest.bin
*.dot
.stfolder
kraken
*.c
kraken_bac
kraken_deprecated
bootstrap_kalypso
kraken_bootstrap
compiler_version.krak
untracked_misc
k_prime
# Added by cargo
/target

14
fib_test/fib.c Normal file
View File

@@ -0,0 +1,14 @@
int fib(n) {
if (n == 0) {
return 1;
} else if (n == 1) {
return 1;
} else {
return fib(n-1) + fib(n-2);
}
}
int main(int argc, char **argv) {
printf("%d\n", fib(atoi(argv[1])));
return 0;
}

16
fib_test/fib_let.c Normal file
View File

@@ -0,0 +1,16 @@
int fib(n) {
if (n == 0) {
return 1;
} else if (n == 1) {
return 1;
} else {
int r1 = fib(n-1);
int r2 = fib(n-2);
return r1 + r2;
}
}
int main(int argc, char **argv) {
printf("%d\n", fib(atoi(argv[1])));
return 0;
}

View File

@@ -0,0 +1,22 @@
set(sources rbtree.kp rbtree-opt.kp nqueens.kp cfold.kp deriv.kp)
set(kraken "../../kraken_wrapper.sh")
foreach (source IN LISTS sources)
get_filename_component(basename "${source}" NAME_WE)
set(name "kraken-${basename}")
set(out_dir "${CMAKE_CURRENT_BINARY_DIR}/out/bench")
set(out_path "${out_dir}/${name}")
add_custom_command(
OUTPUT ${out_path}
COMMAND ${kraken} "${CMAKE_CURRENT_SOURCE_DIR}/${source}" ${out_dir} ${name}
DEPENDS ${source}
VERBATIM)
add_custom_target(update-${name} ALL DEPENDS "${out_path}")
add_executable(${name}-exe IMPORTED)
set_target_properties(${name}-exe PROPERTIES IMPORTED_LOCATION "${out_path}")
endforeach ()

244
koka_bench/kraken/cfold.kp Normal file
View File

@@ -0,0 +1,244 @@
((wrap (vau root_env (quote)
((wrap (vau (let1)
(let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se)))
(let1 current-env (vau de () de)
(let1 cons (lambda (h t) (concat (array h) t))
(let1 Y (lambda (f3)
((lambda (x1) (x1 x1))
(lambda (x2) (f3 (wrap (vau app_env (& y) (lapply (x2 x2) y app_env)))))))
(let1 vY (lambda (f)
((lambda (x3) (x3 x3))
(lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1))))))
(let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2)
true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2)))))
(let (
lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args)))))
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
if (vau de (con than & else) (eval (array cond con than
true (cond (> (len else) 0) (idx else 0)
true false)) de))
map (lambda (f5 l5)
(let (helper (rec-lambda recurse (f4 l4 n4 i4)
(cond (= i4 (len l4)) n4
(<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array
(f4 (idx l4 (+ i4 0)))
(f4 (idx l4 (+ i4 1)))
(f4 (idx l4 (+ i4 2)))
(f4 (idx l4 (+ i4 3)))
)) (+ i4 4))
true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1)))))
(helper f5 l5 (array) 0)))
map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(cond (= i (len l)) n
(<= i (- (len l) 4)) (recurse f l (concat n (array
(f (+ i 0) (idx l (+ i 0)))
(f (+ i 1) (idx l (+ i 1)))
(f (+ i 2) (idx l (+ i 2)))
(f (+ i 3) (idx l (+ i 3)))
)) (+ i 4))
true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1)))))
(helper f l (array) 0)))
filter_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1))
(recurse f l n (+ i 1))))))
(helper f l (array) 0)))
filter (lambda (f l) (filter_i (lambda (i x) (f x)) l))
; Huge thanks to Oleg Kiselyov for his fantastic website
; http://okmij.org/ftp/Computation/fixed-point-combinators.html
Y* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l))))
vY* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l))))
let-rec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
let-vrec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
flat_map (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
flat_map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f i (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
; with all this, we make a destrucutring-capable let
let (let (
destructure_helper (rec-lambda recurse (vs i r)
(cond (= (len vs) i) r
(array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i)))
new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i))
)
(recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1))))))
true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2))))
))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de)))
; and a destructuring-capable lambda!
only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true
(symbol? (idx a i)) (recurse a (+ i 1))
true false))
; Note that if macro_helper is inlined, the mapping lambdas will close over
; se, and then not be able to be taken in as values to the maps, and the vau
; will fail to partially evaluate away.
lambda (let (macro_helper (lambda (p b) (let (
sym_params (map (lambda (param) (if (symbol? param) param
(str-to-symbol (str param)))) p)
body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b)
) (array vau sym_params body))))
(vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se)
(wrap (eval (macro_helper p b) se)))))
; and rec-lambda - yes it's the same definition again
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
nil (array)
not (lambda (x) (if x false true))
or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1)))))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp)))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
foldl (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
(recurse f (lapply f (cons z (map (lambda (x) (idx x i)) vs))) vs (+ i 1)))))
(lambda (f z & vs) (helper f z vs 0)))
foldr (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
(lapply f (cons (recurse f z vs (+ i 1)) (map (lambda (x) (idx x i)) vs))))))
(lambda (f z & vs) (helper f z vs 0)))
reverse (lambda (x) (foldl (lambda (acc i) (cons i acc)) (array) x))
zip (lambda (& xs) (lapply foldr (concat (array (lambda (a & ys) (cons ys a)) (array)) xs)))
match (let (
evaluate_case (rec-lambda evaluate_case (access c) (cond
(symbol? c) (array true (lambda (b) (array let (array c access) b)))
(and (array? c) (= 2 (len c)) (= 'unquote (idx c 0))) (array (array = access (idx c 1)) (lambda (b) b))
(and (array? c) (= 2 (len c)) (= 'quote (idx c 0))) (array (array = access c) (lambda (b) b))
(array? c) (let (
tests (array and (array array? access) (array = (len c) (array len access)))
(tests body_func) ((rec-lambda recurse (tests body_func i) (if (= i (len c))
(array tests body_func)
(let ( (inner_test inner_body_func) (evaluate_case (array idx access i) (idx c i)) )
(recurse (concat tests (array inner_test))
(lambda (b) (body_func (inner_body_func b)))
(+ i 1)))))
tests (lambda (b) b) 0)
) (array tests body_func))
true (array (array = access c) (lambda (b) b))
))
helper (rec-lambda helper (x_sym cases i) (cond (< i (- (len cases) 1)) (let ( (test body_func) (evaluate_case x_sym (idx cases i)) )
(concat (array test (body_func (idx cases (+ i 1)))) (helper x_sym cases (+ i 2))))
true (array true (array error "none matched"))))
) (vau de (x & cases) (eval (array let (array '___MATCH_SYM x) (concat (array cond) (helper '___MATCH_SYM cases 0))) de)))
Var (lambda (x) (array 'Var x))
Val (lambda (x) (array 'Val x))
Add (lambda (l r) (array 'Add l r))
Mul (lambda (l r) (array 'Mul l r))
max (lambda (a b) (if (> a b) a b))
mk_expr (rec-lambda mk_expr (n v)
(if (= n 0)
(if (= v 0) (Var 1) (Val v))
(Add (mk_expr (- n 1) (+ v 1)) (mk_expr (- n 1) (max (- v 1) 0)))))
append_add (rec-lambda append_add (e0 e3) (match e0
('Add e1 e2) (Add e1 (append_add e2 e3))
_ (Add e0 e3)
))
append_mul (rec-lambda append_mul (e0 e3) (match e0
('Mul e1 e2) (Mul e1 (append_mul e2 e3))
_ (Mul e0 e3)
))
reassoc (rec-lambda reassoc (e) (match e
('Add e1 e2) (append_add (reassoc e1) (reassoc e2))
('Mul e1 e2) (append_mul (reassoc e1) (reassoc e2))
x x
))
cfold (rec-lambda cfold (e) (match e
('Add l r) (let (lp (cfold l)
rp (cfold r))
(match lp
('Val lpv) (match rp
('Val rpv) (Val (+ lpv rpv))
('Add f ('Val b)) (Add (Val (+ lpv b)) f)
('Add ('Val b) f) (Add (Val (+ lpv b)) f)
rpo (Add lp rpo))
lpo (Add lpo rp)))
('Mul l r) (let (lp (cfold l)
rp (cfold r))
(match lp
('Val lpv) (match rp
('Val rpv) (Val (* lpv rpv))
('Mul f ('Val b)) (Mul (Val (* lpv b)) f)
('Mul ('Val b) f) (Mul (Val (* lpv b)) f)
rpo (Mul lp rpo))
lpo (Mul lpo rp)))
x x
))
eval (rec-lambda eval (e) (match e
('Var x) 0
('Val v) v
('Add l r) (+ (eval l) (eval r))
('Mul l r) (* (eval l) (eval r))
))
monad (array 'write 1 (str "running cfold") (vau (written code)
(array 'args (vau (args code)
(array 'exit (let (
e (mk_expr (read-string (idx args 1)) 1)
v1 (eval e)
v2 (eval (cfold (reassoc e)))
_ (log v1)
_ (log v2)
) 0))
))
))
) monad)
; end of all lets
))))))
; impl of let1
)) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de)))
; impl of quote
)) (vau (x5) x5))

Binary file not shown.

263
koka_bench/kraken/deriv.kp Normal file
View File

@@ -0,0 +1,263 @@
((wrap (vau root_env (quote)
((wrap (vau (let1)
(let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se)))
(let1 current-env (vau de () de)
(let1 cons (lambda (h t) (concat (array h) t))
(let1 Y (lambda (f3)
((lambda (x1) (x1 x1))
(lambda (x2) (f3 (wrap (vau app_env (& y) (lapply (x2 x2) y app_env)))))))
(let1 vY (lambda (f)
((lambda (x3) (x3 x3))
(lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1))))))
(let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2)
true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2)))))
(let (
lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args)))))
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
if (vau de (con than & else) (eval (array cond con than
true (cond (> (len else) 0) (idx else 0)
true false)) de))
map (lambda (f5 l5)
(let (helper (rec-lambda recurse (f4 l4 n4 i4)
(cond (= i4 (len l4)) n4
(<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array
(f4 (idx l4 (+ i4 0)))
(f4 (idx l4 (+ i4 1)))
(f4 (idx l4 (+ i4 2)))
(f4 (idx l4 (+ i4 3)))
)) (+ i4 4))
true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1)))))
(helper f5 l5 (array) 0)))
map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(cond (= i (len l)) n
(<= i (- (len l) 4)) (recurse f l (concat n (array
(f (+ i 0) (idx l (+ i 0)))
(f (+ i 1) (idx l (+ i 1)))
(f (+ i 2) (idx l (+ i 2)))
(f (+ i 3) (idx l (+ i 3)))
)) (+ i 4))
true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1)))))
(helper f l (array) 0)))
filter_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1))
(recurse f l n (+ i 1))))))
(helper f l (array) 0)))
filter (lambda (f l) (filter_i (lambda (i x) (f x)) l))
; Huge thanks to Oleg Kiselyov for his fantastic website
; http://okmij.org/ftp/Computation/fixed-point-combinators.html
Y* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l))))
vY* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l))))
let-rec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
let-vrec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
flat_map (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
flat_map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f i (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
; with all this, we make a destrucutring-capable let
let (let (
destructure_helper (rec-lambda recurse (vs i r)
(cond (= (len vs) i) r
(array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i)))
new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i))
)
(recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1))))))
true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2))))
))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de)))
; and a destructuring-capable lambda!
only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true
(symbol? (idx a i)) (recurse a (+ i 1))
true false))
; Note that if macro_helper is inlined, the mapping lambdas will close over
; se, and then not be able to be taken in as values to the maps, and the vau
; will fail to partially evaluate away.
lambda (let (macro_helper (lambda (p b) (let (
sym_params (map (lambda (param) (if (symbol? param) param
(str-to-symbol (str param)))) p)
body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b)
) (array vau sym_params body))))
(vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se)
(wrap (eval (macro_helper p b) se)))))
; and rec-lambda - yes it's the same definition again
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
nil (array)
not (lambda (x) (if x false true))
or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1)))))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp)))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
foldl (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
(recurse f (lapply f (cons z (map (lambda (x) (idx x i)) vs))) vs (+ i 1)))))
(lambda (f z & vs) (helper f z vs 0)))
foldr (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
(lapply f (cons (recurse f z vs (+ i 1)) (map (lambda (x) (idx x i)) vs))))))
(lambda (f z & vs) (helper f z vs 0)))
reverse (lambda (x) (foldl (lambda (acc i) (cons i acc)) (array) x))
zip (lambda (& xs) (lapply foldr (concat (array (lambda (a & ys) (cons ys a)) (array)) xs)))
match (let (
evaluate_case (rec-lambda evaluate_case (access c) (cond
(symbol? c) (array true (lambda (b) (array let (array c access) b)))
(and (array? c) (= 2 (len c)) (= 'unquote (idx c 0))) (array (array = access (idx c 1)) (lambda (b) b))
(and (array? c) (= 2 (len c)) (= 'quote (idx c 0))) (array (array = access c) (lambda (b) b))
(array? c) (let (
tests (array and (array array? access) (array = (len c) (array len access)))
(tests body_func) ((rec-lambda recurse (tests body_func i) (if (= i (len c))
(array tests body_func)
(let ( (inner_test inner_body_func) (evaluate_case (array idx access i) (idx c i)) )
(recurse (concat tests (array inner_test))
(lambda (b) (body_func (inner_body_func b)))
(+ i 1)))))
tests (lambda (b) b) 0)
) (array tests body_func))
true (array (array = access c) (lambda (b) b))
))
helper (rec-lambda helper (x_sym cases i) (cond (< i (- (len cases) 1)) (let ( (test body_func) (evaluate_case x_sym (idx cases i)) )
(concat (array test (body_func (idx cases (+ i 1)))) (helper x_sym cases (+ i 2))))
true (array true (array error "none matched"))))
) (vau de (x & cases) (eval (array let (array '___MATCH_SYM x) (concat (array cond) (helper '___MATCH_SYM cases 0))) de)))
Var (lambda (x) (array 'Var x))
Val (lambda (x) (array 'Val x))
Add (lambda (l r) (array 'Add l r))
Mul (lambda (l r) (array 'Mul l r))
Pow (lambda (l r) (array 'Pow l r))
Ln (lambda (e) (array 'Ln e))
pown_helper (rec-lambda pown_helper (a b acc) (if (= b 0) acc
(pown_helper a (- b 1) (* a acc))))
pown (lambda (a b) (pown_helper a b 1))
add (rec-lambda add (n0 m0) (match (array n0 m0)
(('Val n) ('Val m)) (Val (+ n m))
(('Val 0) f) f
(f ('Val 0)) f
(f ('Val n)) (add (Val n) f)
(('Val n) ('Add ('Val m) f)) (add (Val (+ n m)) f)
(f ('Add ('Val n) g)) (add (Val n) (add f g))
(('Add f g) h) (add f (add g h))
(f g) (Add f g)
))
mul (rec-lambda mul (n0 m0) (match (array n0 m0)
(('Val n) ('Val m)) (Val (* n m))
(('Val 0) _) (Val 0)
(_ ('Val 0)) (Val 0)
(f ('Val 1)) f
(('Val 1) f) f
(f ('Val n)) (mul (Val n) f)
(('Val n) ('Mul ('Val m) f)) (mul (Val (* n m)) f)
(f ('Mul ('Val n) g)) (mul (Val n) (mul f g))
(('Mul f g) h) (mul f (mul g h))
(f g) (Mul f g)
))
powr (lambda (m0 n0) (match (array m0 n0)
(('Val m) ('Val n)) (Val (pown m n))
(_ ('Val 0)) (Val 1)
(f ('Val 1)) f
(('Val 0) _) (Val 0)
(f g) (Pow f g)
))
ln (lambda (n) (match n
('Val 1) (Val 0)
f (Ln f)
))
d (rec-lambda d (x e) (match e
('Val _) (Val 0)
('Var y) (if (= x y) (Val 1) (Val 0))
('Add f g) (add (d x f) (d x g))
('Mul f g) (add (mul f (d x g)) (mul g (d x f)))
('Pow f g) (mul (powr f g) (add (mul (mul g (d x f)) (powr f (Val -1))) (mul (ln f) (d x g))))
('Ln f) (mul (d x f) (powr f (Val -1)))
))
count (rec-lambda count (e) (match e
('Val _) 1
('Var y) 1
('Add f g) (+ (count f) (count g))
('Mul f g) (+ (count f) (count g))
('Pow f g) (+ (count f) (count g))
('Ln f) (count f)
))
nest_aux (rec-lambda nest_aux (s f n x) (if (= n 0) x
(nest_aux s f (- n 1) (f (- s n) x))))
nest (lambda (f n e) (nest_aux n f n e))
deriv (lambda (i f) (let (d (d "x" f)
_ (log (+ i 1) " count: " (count d))
) d))
monad (array 'write 1 (str "running deriv") (vau (written code)
(array 'args (vau (args code)
(array 'exit (let (
n (read-string (idx args 1))
x (Var "x")
f (powr x x)
_ (log (nest deriv n f))
_ (log "done")
) 0))
))
))
) monad)
; end of all lets
))))))
; impl of let1
)) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de)))
; impl of quote
)) (vau (x5) x5))

View File

@@ -0,0 +1,210 @@
((wrap (vau root_env (quote)
((wrap (vau (let1)
(let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se)))
(let1 current-env (vau de () de)
(let1 cons (lambda (h t) (concat (array h) t))
(let1 Y (lambda (f3)
((lambda (x1) (x1 x1))
(lambda (x2) (f3 (wrap (vau app_env (& y) (lapply (x2 x2) y app_env)))))))
(let1 vY (lambda (f)
((lambda (x3) (x3 x3))
(lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1))))))
(let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2)
true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2)))))
(let (
lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args)))))
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
if (vau de (con than & else) (eval (array cond con than
true (cond (> (len else) 0) (idx else 0)
true false)) de))
map (lambda (f5 l5)
(let (helper (rec-lambda recurse (f4 l4 n4 i4)
(cond (= i4 (len l4)) n4
(<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array
(f4 (idx l4 (+ i4 0)))
(f4 (idx l4 (+ i4 1)))
(f4 (idx l4 (+ i4 2)))
(f4 (idx l4 (+ i4 3)))
)) (+ i4 4))
true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1)))))
(helper f5 l5 (array) 0)))
map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(cond (= i (len l)) n
(<= i (- (len l) 4)) (recurse f l (concat n (array
(f (+ i 0) (idx l (+ i 0)))
(f (+ i 1) (idx l (+ i 1)))
(f (+ i 2) (idx l (+ i 2)))
(f (+ i 3) (idx l (+ i 3)))
)) (+ i 4))
true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1)))))
(helper f l (array) 0)))
filter_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1))
(recurse f l n (+ i 1))))))
(helper f l (array) 0)))
filter (lambda (f l) (filter_i (lambda (i x) (f x)) l))
; Huge thanks to Oleg Kiselyov for his fantastic website
; http://okmij.org/ftp/Computation/fixed-point-combinators.html
Y* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l))))
vY* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l))))
let-rec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
let-vrec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
flat_map (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
flat_map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f i (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
; with all this, we make a destrucutring-capable let
let (let (
destructure_helper (rec-lambda recurse (vs i r)
(cond (= (len vs) i) r
(array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i)))
new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i))
)
(recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1))))))
true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2))))
))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de)))
; and a destructuring-capable lambda!
only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true
(symbol? (idx a i)) (recurse a (+ i 1))
true false))
; Note that if macro_helper is inlined, the mapping lambdas will close over
; se, and then not be able to be taken in as values to the maps, and the vau
; will fail to partially evaluate away.
lambda (let (macro_helper (lambda (p b) (let (
sym_params (map (lambda (param) (if (symbol? param) param
(str-to-symbol (str param)))) p)
body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b)
) (array vau sym_params body))))
(vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se)
(wrap (eval (macro_helper p b) se)))))
; and rec-lambda - yes it's the same definition again
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
nil (array)
not (lambda (x) (if x false true))
or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1)))))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp)))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
foldl (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
(recurse f (lapply f (cons z (map (lambda (x) (idx x i)) vs))) vs (+ i 1)))))
(lambda (f z & vs) (helper f z vs 0)))
foldr (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
(lapply f (cons (recurse f z vs (+ i 1)) (map (lambda (x) (idx x i)) vs))))))
(lambda (f z & vs) (helper f z vs 0)))
reverse (lambda (x) (foldl (lambda (acc i) (cons i acc)) (array) x))
zip (lambda (& xs) (lapply foldr (concat (array (lambda (a & ys) (cons ys a)) (array)) xs)))
match (let (
evaluate_case (rec-lambda evaluate_case (access c) (cond
(symbol? c) (array true (lambda (b) (array let (array c access) b)))
(and (array? c) (= 2 (len c)) (= 'unquote (idx c 0))) (array (array = access (idx c 1)) (lambda (b) b))
(and (array? c) (= 2 (len c)) (= 'quote (idx c 0))) (array (array = access c) (lambda (b) b))
(array? c) (let (
tests (array and (array array? access) (array = (len c) (array len access)))
(tests body_func) ((rec-lambda recurse (tests body_func i) (if (= i (len c))
(array tests body_func)
(let ( (inner_test inner_body_func) (evaluate_case (array idx access i) (idx c i)) )
(recurse (concat tests (array inner_test))
(lambda (b) (body_func (inner_body_func b)))
(+ i 1)))))
tests (lambda (b) b) 0)
) (array tests body_func))
true (array (array = access c) (lambda (b) b))
))
helper (rec-lambda helper (x_sym cases i) (cond (< i (- (len cases) 1)) (let ( (test body_func) (evaluate_case x_sym (idx cases i)) )
(concat (array test (body_func (idx cases (+ i 1)))) (helper x_sym cases (+ i 2))))
true (array true (array error "none matched"))))
) (vau de (x & cases) (eval (array let (array '___MATCH_SYM x) (concat (array cond) (helper '___MATCH_SYM cases 0))) de)))
safe (rec-lambda safe (queen diag i xs)
(if (= i (len xs))
true
(let ( q (idx xs i) )
(and (!= queen q)
(!= queen (+ q diag))
(!= queen (- q diag))
(safe queen (+ diag 1) (+ i 1) xs)))))
append-safe (rec-lambda append-safe (queen xs xss)
(cond (<= queen 0) xss
(safe queen 1 0 xs) (append-safe (- queen 1)
xs
(cons (cons queen xs) xss))
true (append-safe (- queen 1) xs xss)))
extend (rec-lambda extend (queen acc xss i)
(if (= i (len xss))
acc
(extend queen
(append-safe queen (idx xss i) acc)
xss
(+ i 1))))
find-solutions (rec-lambda find-solutions (n queen)
(if (= 0 queen)
(array nil)
(extend n nil (find-solutions n (- queen 1)) 0)))
nqueens (lambda (n) (len (find-solutions n n)))
monad (array 'write 1 (str "running nqueens") (vau (written code)
(array 'args (vau (args code)
(array 'exit (log (nqueens (read-string (idx args 1)))))
))
))
) monad)
; end of all lets
))))))
; impl of let1
)) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de)))
; impl of quote
)) (vau (x5) x5))

View File

@@ -0,0 +1,225 @@
((wrap (vau root_env (quote)
((wrap (vau (let1)
(let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se)))
(let1 current-env (vau de () de)
(let1 cons (lambda (h t) (concat (array h) t))
(let1 Y (lambda (f3)
((lambda (x1) (x1 x1))
(lambda (x2) (f3 (wrap (vau app_env (& y) (lapply (x2 x2) y app_env)))))))
(let1 vY (lambda (f)
((lambda (x3) (x3 x3))
(lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1))))))
(let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2)
true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2)))))
(let (
lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args)))))
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
if (vau de (con than & else) (eval (array cond con than
true (cond (> (len else) 0) (idx else 0)
true false)) de))
map (lambda (f5 l5)
(let (helper (rec-lambda recurse (f4 l4 n4 i4)
(cond (= i4 (len l4)) n4
(<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array
(f4 (idx l4 (+ i4 0)))
(f4 (idx l4 (+ i4 1)))
(f4 (idx l4 (+ i4 2)))
(f4 (idx l4 (+ i4 3)))
)) (+ i4 4))
true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1)))))
(helper f5 l5 (array) 0)))
map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(cond (= i (len l)) n
(<= i (- (len l) 4)) (recurse f l (concat n (array
(f (+ i 0) (idx l (+ i 0)))
(f (+ i 1) (idx l (+ i 1)))
(f (+ i 2) (idx l (+ i 2)))
(f (+ i 3) (idx l (+ i 3)))
)) (+ i 4))
true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1)))))
(helper f l (array) 0)))
filter_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1))
(recurse f l n (+ i 1))))))
(helper f l (array) 0)))
filter (lambda (f l) (filter_i (lambda (i x) (f x)) l))
; Huge thanks to Oleg Kiselyov for his fantastic website
; http://okmij.org/ftp/Computation/fixed-point-combinators.html
Y* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l))))
vY* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l))))
let-rec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
let-vrec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
flat_map (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
flat_map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f i (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
; with all this, we make a destrucutring-capable let
let (let (
destructure_helper (rec-lambda recurse (vs i r)
(cond (= (len vs) i) r
(array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i)))
new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i))
)
(recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1))))))
true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2))))
))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de)))
; and a destructuring-capable lambda!
only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true
(symbol? (idx a i)) (recurse a (+ i 1))
true false))
; Note that if macro_helper is inlined, the mapping lambdas will close over
; se, and then not be able to be taken in as values to the maps, and the vau
; will fail to partially evaluate away.
lambda (let (macro_helper (lambda (p b) (let (
sym_params (map (lambda (param) (if (symbol? param) param
(str-to-symbol (str param)))) p)
body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b)
) (array vau sym_params body))))
(vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se)
(wrap (eval (macro_helper p b) se)))))
; and rec-lambda - yes it's the same definition again
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
nil (array)
not (lambda (x) (if x false true))
or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1)))))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp)))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
foldl (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
(recurse f (lapply f (cons z (map (lambda (x) (idx x i)) vs))) vs (+ i 1)))))
(lambda (f z & vs) (helper f z vs 0)))
foldr (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
(lapply f (cons (recurse f z vs (+ i 1)) (map (lambda (x) (idx x i)) vs))))))
(lambda (f z & vs) (helper f z vs 0)))
reverse (lambda (x) (foldl (lambda (acc i) (cons i acc)) (array) x))
zip (lambda (& xs) (lapply foldr (concat (array (lambda (a & ys) (cons ys a)) (array)) xs)))
match (let (
evaluate_case (rec-lambda evaluate_case (access c) (cond
(symbol? c) (array true (lambda (b) (array let (array c access) b)))
(and (array? c) (= 2 (len c)) (= 'unquote (idx c 0))) (array (array = access (idx c 1)) (lambda (b) b))
(and (array? c) (= 2 (len c)) (= 'quote (idx c 0))) (array (array = access c) (lambda (b) b))
(array? c) (let (
tests (array and (array array? access) (array = (len c) (array len access)))
(tests body_func) ((rec-lambda recurse (tests body_func i) (if (= i (len c))
(array tests body_func)
(let ( (inner_test inner_body_func) (evaluate_case (array idx access i) (idx c i)) )
(recurse (concat tests (array inner_test))
(lambda (b) (body_func (inner_body_func b)))
(+ i 1)))))
tests (lambda (b) b) 0)
) (array tests body_func))
true (array (array = access c) (lambda (b) b))
))
helper (rec-lambda helper (x_sym cases i) (cond (< i (- (len cases) 1)) (let ( (test body_func) (evaluate_case x_sym (idx cases i)) )
(concat (array test (body_func (idx cases (+ i 1)))) (helper x_sym cases (+ i 2))))
true (array true (array error "none matched"))))
) (vau de (x & cases) (eval (array let (array '___MATCH_SYM x) (concat (array cond) (helper '___MATCH_SYM cases 0))) de)))
; This is based on https://www.cs.cornell.edu/courses/cs3110/2020sp/a4/deletion.pdf
; and the figure references refer to it
; Insert is taken from the same paper, but is origional to Okasaki, I belive
; The tree has been modified slightly to take in a comparison function
; and override if insert replaces or not to allow use as a set or as a map
; I think this is actually pretty cool - instead of having a bunch of seperate ['B]
; be our leaf node, we use ['B] with all nils. This allows us to not use -B, as
; both leaf and non-leaf 'BB has the same structure with children! Also, we make
; sure to use empty itself so we don't make a ton of empties...
empty (array 'B nil nil nil)
E empty
EE (array 'BB nil nil nil)
generic-foldl (rec-lambda recurse (f z t) (match t
,E z
(c a x b) (recurse f (f (recurse f z a) x) b)))
blacken (lambda (t) (match t
('R a x b) (array 'B a x b)
t t))
balance (lambda (t) (match t
; figures 1 and 2
('B ('R ('R a x b) y c) z d) (array 'R (array 'B a x b) y (array 'B c z d))
('B ('R a x ('R b y c)) z d) (array 'R (array 'B a x b) y (array 'B c z d))
('B a x ('R ('R b y c) z d)) (array 'R (array 'B a x b) y (array 'B c z d))
('B a x ('R b y ('R c z d))) (array 'R (array 'B a x b) y (array 'B c z d))
; figure 8, double black cases
('BB ('R a x ('R b y c)) z d) (array 'B (array 'B a x b) y (array 'B c z d))
('BB a x ('R ('R b y c) z d)) (array 'B (array 'B a x b) y (array 'B c z d))
; already balenced
t t))
map-insert (lambda (t k v) (blacken ((rec-lambda ins (t) (match t
,E (array 'R t (array k v) t)
(c a x b) (cond (< k (idx x 0)) (balance (array c (ins a) x b))
(= k (idx x 0)) (array c a (array k v) b)
true (balance (array c a x (ins b)))))) t)))
map-empty empty
make-test-tree (rec-lambda make-test-tree (n t) (cond (<= n 0) t
true (make-test-tree (- n 1) (map-insert t n (= 0 (% n 10))))))
reduce-test-tree (lambda (tree) (generic-foldl (lambda (a x) (if (idx x 1) (+ a 1) a)) 0 tree))
monad (array 'write 1 (str "running tree test") (vau (written code)
(array 'args (vau (args code)
(array 'exit (log (reduce-test-tree (make-test-tree (read-string (idx args 1)) map-empty))))
))
))
) monad)
; end of all lets
))))))
; impl of let1
)) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de)))
; impl of quote
)) (vau (x5) x5))

309
koka_bench/kraken/rbtree.kp Normal file
View File

@@ -0,0 +1,309 @@
((wrap (vau root_env (quote)
((wrap (vau (let1)
(let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se)))
(let1 current-env (vau de () de)
(let1 cons (lambda (h t) (concat (array h) t))
(let1 Y (lambda (f3)
((lambda (x1) (x1 x1))
(lambda (x2) (f3 (wrap (vau app_env (& y) (lapply (x2 x2) y app_env)))))))
(let1 vY (lambda (f)
((lambda (x3) (x3 x3))
(lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1))))))
(let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2)
true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2)))))
(let (
lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args)))))
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
if (vau de (con than & else) (eval (array cond con than
true (cond (> (len else) 0) (idx else 0)
true false)) de))
map (lambda (f5 l5)
(let (helper (rec-lambda recurse (f4 l4 n4 i4)
(cond (= i4 (len l4)) n4
(<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array
(f4 (idx l4 (+ i4 0)))
(f4 (idx l4 (+ i4 1)))
(f4 (idx l4 (+ i4 2)))
(f4 (idx l4 (+ i4 3)))
)) (+ i4 4))
true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1)))))
(helper f5 l5 (array) 0)))
map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(cond (= i (len l)) n
(<= i (- (len l) 4)) (recurse f l (concat n (array
(f (+ i 0) (idx l (+ i 0)))
(f (+ i 1) (idx l (+ i 1)))
(f (+ i 2) (idx l (+ i 2)))
(f (+ i 3) (idx l (+ i 3)))
)) (+ i 4))
true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1)))))
(helper f l (array) 0)))
filter_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1))
(recurse f l n (+ i 1))))))
(helper f l (array) 0)))
filter (lambda (f l) (filter_i (lambda (i x) (f x)) l))
; Huge thanks to Oleg Kiselyov for his fantastic website
; http://okmij.org/ftp/Computation/fixed-point-combinators.html
Y* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l))))
vY* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l))))
let-rec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
let-vrec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
flat_map (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
flat_map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f i (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
; with all this, we make a destrucutring-capable let
let (let (
destructure_helper (rec-lambda recurse (vs i r)
(cond (= (len vs) i) r
(array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i)))
new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i))
)
(recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1))))))
true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2))))
))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de)))
; and a destructuring-capable lambda!
only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true
(symbol? (idx a i)) (recurse a (+ i 1))
true false))
; Note that if macro_helper is inlined, the mapping lambdas will close over
; se, and then not be able to be taken in as values to the maps, and the vau
; will fail to partially evaluate away.
lambda (let (macro_helper (lambda (p b) (let (
sym_params (map (lambda (param) (if (symbol? param) param
(str-to-symbol (str param)))) p)
body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b)
) (array vau sym_params body))))
(vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se)
(wrap (eval (macro_helper p b) se)))))
; and rec-lambda - yes it's the same definition again
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
nil (array)
not (lambda (x) (if x false true))
or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1)))))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp)))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
foldl (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
(recurse f (lapply f (cons z (map (lambda (x) (idx x i)) vs))) vs (+ i 1)))))
(lambda (f z & vs) (helper f z vs 0)))
foldr (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z
(lapply f (cons (recurse f z vs (+ i 1)) (map (lambda (x) (idx x i)) vs))))))
(lambda (f z & vs) (helper f z vs 0)))
reverse (lambda (x) (foldl (lambda (acc i) (cons i acc)) (array) x))
zip (lambda (& xs) (lapply foldr (concat (array (lambda (a & ys) (cons ys a)) (array)) xs)))
match (let (
evaluate_case (rec-lambda evaluate_case (access c) (cond
(symbol? c) (array true (lambda (b) (array let (array c access) b)))
(and (array? c) (= 2 (len c)) (= 'unquote (idx c 0))) (array (array = access (idx c 1)) (lambda (b) b))
(and (array? c) (= 2 (len c)) (= 'quote (idx c 0))) (array (array = access c) (lambda (b) b))
(array? c) (let (
tests (array and (array array? access) (array = (len c) (array len access)))
(tests body_func) ((rec-lambda recurse (tests body_func i) (if (= i (len c))
(array tests body_func)
(let ( (inner_test inner_body_func) (evaluate_case (array idx access i) (idx c i)) )
(recurse (concat tests (array inner_test))
(lambda (b) (body_func (inner_body_func b)))
(+ i 1)))))
tests (lambda (b) b) 0)
) (array tests body_func))
true (array (array = access c) (lambda (b) b))
))
helper (rec-lambda helper (x_sym cases i) (cond (< i (- (len cases) 1)) (let ( (test body_func) (evaluate_case x_sym (idx cases i)) )
(concat (array test (body_func (idx cases (+ i 1)))) (helper x_sym cases (+ i 2))))
true (array true (array error "none matched"))))
) (vau de (x & cases) (eval (array let (array '___MATCH_SYM x) (concat (array cond) (helper '___MATCH_SYM cases 0))) de)))
; This is based on https://www.cs.cornell.edu/courses/cs3110/2020sp/a4/deletion.pdf
; and the figure references refer to it
; Insert is taken from the same paper, but is origional to Okasaki, I belive
; The tree has been modified slightly to take in a comparison function
; and override if insert replaces or not to allow use as a set or as a map
; I think this is actually pretty cool - instead of having a bunch of seperate ['B]
; be our leaf node, we use ['B] with all nils. This allows us to not use -B, as
; both leaf and non-leaf 'BB has the same structure with children! Also, we make
; sure to use empty itself so we don't make a ton of empties...
empty (array 'B nil nil nil)
E empty
EE (array 'BB nil nil nil)
size (rec-lambda recurse (t) (match t
,E 0
(c a x b) (+ 1 (recurse a) (recurse b))))
generic-foldl (rec-lambda recurse (f z t) (match t
,E z
(c a x b) (recurse f (f (recurse f z a) x) b)))
generic-contains? (rec-lambda recurse (t cmp v found not-found) (match t
,E (not-found)
(c a x b) (match (cmp v x) '< (recurse a cmp v found not-found)
'= (found x)
'> (recurse b cmp v found not-found))))
blacken (lambda (t) (match t
('R a x b) (array 'B a x b)
t t))
balance (lambda (t) (match t
; figures 1 and 2
('B ('R ('R a x b) y c) z d) (array 'R (array 'B a x b) y (array 'B c z d))
('B ('R a x ('R b y c)) z d) (array 'R (array 'B a x b) y (array 'B c z d))
('B a x ('R ('R b y c) z d)) (array 'R (array 'B a x b) y (array 'B c z d))
('B a x ('R b y ('R c z d))) (array 'R (array 'B a x b) y (array 'B c z d))
; figure 8, double black cases
('BB ('R a x ('R b y c)) z d) (array 'B (array 'B a x b) y (array 'B c z d))
('BB a x ('R ('R b y c) z d)) (array 'B (array 'B a x b) y (array 'B c z d))
; already balenced
t t))
generic-insert (lambda (t cmp v replace) (let (
ins (rec-lambda ins (t) (match t
,E (array 'R t v t)
(c a x b) (match (cmp v x) '< (balance (array c (ins a) x b))
'= (if replace (array c a v b)
t)
'> (balance (array c a x (ins b))))))
) (blacken (ins t))))
rotate (lambda (t) (match t
; case 1, fig 6
('R ('BB a x b) y ('B c z d)) (balance (array 'B (array 'R (array 'B a x b) y c) z d))
('R ('B a x b) y ('BB c z d)) (balance (array 'B a x (array 'R b y (array 'B c z d))))
; case 2, figure 7
('B ('BB a x b) y ('B c z d)) (balance (array 'BB (array 'R (array 'B a x b) y c) z d))
('B ('B a x b) y ('BB c z d)) (balance (array 'BB a x (array 'R b y (array 'B c z d))))
; case 3, figure 9
('B ('BB a w b) x ('R ('B c y d) z e)) (array 'B (balance (array 'B (array 'R (array 'B a w b) x c) y d)) z e)
('B ('R a w ('B b x c)) y ('BB d z e)) (array 'B a w (balance (array 'B b x (array 'R c y (array 'B d z e)))))
; fall through
t t))
redden (lambda (t) (match t
('B a x b) (if (and (= 'B (idx a 0)) (= 'B (idx b 0))) (array 'R a x b)
t)
t t))
min_delete (rec-lambda recurse (t) (match t
,E (error "min_delete empty tree")
('R ,E x ,E) (array x E)
('B ,E x ,E) (array x EE)
('B ,E x ('R a y b)) (array x (array 'B a y b))
(c a x b) (let ((v ap) (recurse a)) (array v (rotate (array c ap x b))))))
generic-delete (lambda (t cmp v) (let (
del (rec-lambda del (t v) (match t
; figure 3
,E t
; figure 4
('R ,E x ,E) (match (cmp v x) '= E
_ t)
('B ('R a x b) y ,E) (match (cmp v y) '< (rotate (array 'B (del (array 'R a x b) v) y E))
'= (array 'B a x b)
'> t)
; figure 5
('B ,E x ,E) (match (cmp v x) '= EE
_ t)
(c a x b) (match (cmp v x) '< (rotate (array c (del a v) x b))
'= (let ((array vp bp) (min_delete b))
(rotate (array c a vp bp)))
'> (rotate (array c a x (del b v))))))
) (del (redden t) v)))
set-cmp (lambda (a b) (cond (< a b) '<
(= a b) '=
true '>))
set-empty empty
set-foldl generic-foldl
set-insert (lambda (t x) (generic-insert t set-cmp x false))
set-contains? (lambda (t x) (generic-contains? t set-cmp x (lambda (f) true) (lambda () false)))
set-remove (lambda (t x) (generic-delete t set-cmp x))
map-cmp (lambda (a b) (let (ak (idx a 0)
bk (idx b 0))
(cond (< ak bk) '<
(= ak bk) '=
true '>)))
map-empty empty
map-insert (lambda (t k v) (generic-insert t map-cmp (array k v) true))
map-contains-key? (lambda (t k) (generic-contains? t map-cmp (array k nil) (lambda (f) true) (lambda () false)))
map-get (lambda (t k) (generic-contains? t map-cmp (array k nil) (lambda (f) (idx f 1)) (lambda () (error (str "didn't find key " k " in map " t)))))
map-get-or-default (lambda (t k d) (generic-contains? t map-cmp (array k nil) (lambda (f) (idx f 1)) (lambda () d)))
map-get-with-default (lambda (t k d) (generic-contains? t map-cmp (array k nil) (lambda (f) (idx f 1)) (lambda () (d))))
map-remove (lambda (t k) (generic-delete t map-cmp (array k nil)))
; This could be 2x as efficent by being implmented on generic instead of map,
; as we wouldn't have to traverse once to find and once to insert
multimap-empty map-empty
multimap-insert (lambda (t k v) (map-insert t k (set-insert (map-get-or-default t k set-empty) v)))
multimap-get (lambda (t k) (map-get-or-default t k set-empty))
make-test-tree (rec-lambda make-test-tree (n t) (cond (<= n 0) t
true (make-test-tree (- n 1) (map-insert t n (= 0 (% n 10))))))
reduce-test-tree (lambda (tree) (generic-foldl (lambda (a x) (if (idx x 1) (+ a 1) a)) 0 tree))
monad (array 'write 1 (str "running tree test") (vau (written code)
(array 'args (vau (args code)
(array 'exit (log (reduce-test-tree (make-test-tree (read-string (idx args 1)) map-empty))))
))
))
) monad)
; end of all lets
))))))
; impl of let1
)) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de)))
; impl of quote
)) (vau (x5) x5))

17
working_files/fib.c Normal file
View File

@@ -0,0 +1,17 @@
#include <stdio.h>
int fib(int n) {
if (n == 0) {
return 0;
} else if (n == 1) {
return 1;
} else {
return fib(n-1) + fib(n-2);
}
}
int main(int argc, char** argv) {
int n = 27;
printf("Fib(%d): %d\n", n, fib(n));
return 0;
}