((wrap (vau root_env (quote) ((wrap (vau (let1) (let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se))) (let1 current-env (vau de () de) (let1 cons (lambda (h t) (concat (array h) t)) (let1 Y (lambda (f3) ((lambda (x1) (x1 x1)) (lambda (x2) (f3 (lambda (& y) (lapply (x2 x2) y)))))) (let1 vY (lambda (f) ((lambda (x3) (x3 x3)) (lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1)))))) (let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2) true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2))))) (let ( lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args))))) rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se)) if (vau de (con than & else) (cond (eval con de) (eval than de) (> (len else) 0) (eval (idx else 0) de) true false)) map (lambda (f5 l5) ; now maybe errors on can't find helper? (let (helper (rec-lambda recurse (f4 l4 n4 i4) (cond (= i4 (len l4)) n4 (<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array (f4 (idx l4 (+ i4 0))) (f4 (idx l4 (+ i4 1))) (f4 (idx l4 (+ i4 2))) (f4 (idx l4 (+ i4 3))) )) (+ i4 4)) true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1))))) (helper f5 l5 (array) 0))) map_i (lambda (f l) (let (helper (rec-lambda recurse (f l n i) (cond (= i (len l)) n (<= i (- (len l) 4)) (recurse f l (concat n (array (f (+ i 0) (idx l (+ i 0))) (f (+ i 1) (idx l (+ i 1))) (f (+ i 2) (idx l (+ i 2))) (f (+ i 3) (idx l (+ i 3))) )) (+ i 4)) true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1))))) (helper f l (array) 0))) filter_i (lambda (f l) (let (helper (rec-lambda recurse (f l n i) (if (= i (len l)) n (if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1)) (recurse f l n (+ i 1)))))) (helper f l (array) 0))) filter (lambda (f l) (filter_i (lambda (i x) (f x)) l)) foldl (let (helper (rec-lambda recurse (f z vs i) (if (= i (len (idx vs 0))) z (recurse f (lapply f (cons z (map (lambda (x) (idx x i)) vs))) vs (+ i 1))))) (lambda (f z & vs) (helper f z vs 0))) not (lambda (x) (if x false true)) ; Huge thanks to Oleg Kiselyov for his fantastic website ; http://okmij.org/ftp/Computation/fixed-point-combinators.html Y* (lambda (& l) ((lambda (u) (u u)) (lambda (p) (map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l)))) vY* (lambda (& l) ((lambda (u) (u u)) (lambda (p) (map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l)))) let-rec (vau de (name_func body) (let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func) funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func) overwrite_name (idx name_func (- (len name_func) 2))) (eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs))) (lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names))) body) de))) let-vrec (vau de (name_func body) (let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func) funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func) overwrite_name (idx name_func (- (len name_func) 2))) (eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs))) (lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names))) body) de))) flat_map (lambda (f l) (let (helper (rec-lambda recurse (f l n i) (if (= i (len l)) n (recurse f l (concat n (f (idx l i))) (+ i 1))))) (helper f l (array) 0))) flat_map_i (lambda (f l) (let (helper (rec-lambda recurse (f l n i) (if (= i (len l)) n (recurse f l (concat n (f i (idx l i))) (+ i 1))))) (helper f l (array) 0))) ; with all this, we make a destrucutring-capable let let (let ( destructure_helper (rec-lambda recurse (vs i r) (cond (= (len vs) i) r (array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i))) ;new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (slice (idx vs i) 1 -1)) new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i)) ) (recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1)))))) true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2)))) ))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de))) ; and a destructuring-capable lambda! only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true (symbol? (idx a i)) (recurse a (+ i 1)) true false)) ; Note that if macro_helper is inlined, the mapping lambdas will close over ; se, and then not be able to be taken in as values to the maps, and the vau ; will fail to partially evaluate away. lambda (let (macro_helper (lambda (p b) (let ( sym_params (map (lambda (param) (if (symbol? param) param (str-to-symbol (str param)))) p) body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b) ) (array vau sym_params body)))) (vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se) (wrap (eval (macro_helper p b) se))))) ; and rec-lambda - yes it's the same definition again rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se)) nil (array) or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false (= (+ 1 i) (len bs)) (idx bs i) true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1))))))) (vau se (& bs) (eval (macro_helper bs 0) se))) and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true (= (+ 1 i) (len bs)) (idx bs i) true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp))))) (vau se (& bs) (eval (macro_helper bs 0) se))) monad (array 'write 1 "entering debug time!" (vau (written code) (array 'exit (debug)))) ) monad ) ;(array 'write 1 "test_self_out2" (vau (written code) 7)) ; end of all lets )))))) ; impl of let1 ; this would be the macro style version ((( )) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de))) ;)) (vau de (s v b) (eval (array (array vau (array s) b) (eval v de)) de))) ; impl of quote )) (vau (x5) x5))