#include "ASTTransformation.h" ASTTransformation::ASTTransformation(Importer *importerIn) { importer = importerIn; topScope = NULL; //Set up language level reserved identifier scope (only this, right now) languageLevelReservedWords["this"].push_back(new NodeTree("identifier", ASTData(identifier, Symbol("this", true), NULL))); //Set up language level special scope. (the final scope checked) //Note the NULL type languageLevelOperators["+"].push_back(new NodeTree("function", ASTData(function, Symbol("+", true), NULL))); languageLevelOperators["-"].push_back(new NodeTree("function", ASTData(function, Symbol("-", true), NULL))); languageLevelOperators["*"].push_back(new NodeTree("function", ASTData(function, Symbol("*", true), NULL))); languageLevelOperators["/"].push_back(new NodeTree("function", ASTData(function, Symbol("/", true), NULL))); languageLevelOperators["%"].push_back(new NodeTree("function", ASTData(function, Symbol("%", true), NULL))); languageLevelOperators["&"].push_back(new NodeTree("function", ASTData(function, Symbol("&", true), NULL))); languageLevelOperators["--"].push_back(new NodeTree("function", ASTData(function, Symbol("--", true), NULL))); languageLevelOperators["++"].push_back(new NodeTree("function", ASTData(function, Symbol("++", true), NULL))); languageLevelOperators["=="].push_back(new NodeTree("function", ASTData(function, Symbol("==", true), new Type(boolean)))); languageLevelOperators["!="].push_back(new NodeTree("function", ASTData(function, Symbol("!=", true), new Type(boolean)))); languageLevelOperators["<="].push_back(new NodeTree("function", ASTData(function, Symbol("<=", true), new Type(boolean)))); languageLevelOperators[">="].push_back(new NodeTree("function", ASTData(function, Symbol(">=", true), new Type(boolean)))); languageLevelOperators["<"].push_back(new NodeTree("function", ASTData(function, Symbol("<", true), new Type(boolean)))); languageLevelOperators[">"].push_back(new NodeTree("function", ASTData(function, Symbol(">", true), new Type(boolean)))); languageLevelOperators["&&"].push_back(new NodeTree("function", ASTData(function, Symbol("&&", true), new Type(boolean)))); languageLevelOperators["||"].push_back(new NodeTree("function", ASTData(function, Symbol("||", true), new Type(boolean)))); languageLevelOperators["!"].push_back(new NodeTree("function", ASTData(function, Symbol("!", true), new Type(boolean)))); languageLevelOperators["*="].push_back(new NodeTree("function", ASTData(function, Symbol("*=", true), NULL))); languageLevelOperators["+="].push_back(new NodeTree("function", ASTData(function, Symbol("+=", true), NULL))); languageLevelOperators["-="].push_back(new NodeTree("function", ASTData(function, Symbol("-=", true), NULL))); languageLevelOperators["."].push_back(new NodeTree("function", ASTData(function, Symbol(".", true), NULL))); languageLevelOperators["->"].push_back(new NodeTree("function", ASTData(function, Symbol("->", true), NULL))); languageLevelOperators["[]"].push_back(new NodeTree("function", ASTData(function, Symbol("[]", true), NULL))); } ASTTransformation::~ASTTransformation() { // } //First pass defines all type_defs (objects and ailises) NodeTree* ASTTransformation::firstPass(std::string fileName, NodeTree* parseTree) { NodeTree* translationUnit = new NodeTree("translation_unit", ASTData(translation_unit)); std::vector*> children = parseTree->getChildren(); importer->registerAST(fileName, translationUnit, parseTree); //Register ourselves with the importer. //This puts us in the scope and the list of ASTs that go through all the passes //Go through and define all types (type_defs whether they are classes or ailises, as well as including non-instantiated templates) for (NodeTree* i : children) { if (i->getDataRef()->getName() == "type_def") { std::string name; if (i->getChildren()[0]->getData().getName() == "template_dec") // It's a template name = concatSymbolTree(i->getChildren()[1]); else //It's not name = concatSymbolTree(i->getChildren()[0]); NodeTree* firstDec = new NodeTree("type_def", ASTData(type_def, Symbol(name, true, name))); //If this is a template, go ahead and set it up. Pass 2 needs templates set up so it can (partially) instantiate them. //So we give this typedef its name without any template types and make its type template_type, and point to this from node. //Then, when this template is instantiated, it will run transform on from with the types filled in. auto typedefChildren = i->getChildren(); if (typedefChildren[0]->getData().getName() == "template_dec") { if (typedefChildren.size() > 2 && typedefChildren[2]->getData().getName() == "traits") firstDec->getDataRef()->valueType = new Type(template_type, i, parseTraits(i->getChildren()[2])); else firstDec->getDataRef()->valueType = new Type(template_type, i); } else if (typedefChildren.size() > 1 && typedefChildren[1]->getData().getName() == "traits") firstDec->getDataRef()->valueType = new Type(firstDec, parseTraits(i->getChildren()[1])); else if (typedefChildren.size() == 1 || typedefChildren[1]->getData().getName() != "type") //We don't make the type for alises, because the second pass will assign it the type it points to firstDec->getDataRef()->valueType = new Type(firstDec); translationUnit->addChild(firstDec); translationUnit->getDataRef()->scope[name].push_back(firstDec); firstDec->getDataRef()->scope["~enclosing_scope"].push_back(translationUnit); } } //Now go through and do all imports //We do this second so that if an import also imports us, all of our stuff has already been defined for (NodeTree* i : children) { if (i->getDataRef()->getName() == "import") { auto importChildren = i->getChildren(); std::string toImport = concatSymbolTree(importChildren[0]); auto importNode = new NodeTree("import", ASTData(import, Symbol(toImport, true))); translationUnit->addChild(importNode); //Do the imported file too NodeTree* outsideTranslationUnit = importer->importFirstPass(toImport + ".krak"); translationUnit->getDataRef()->scope[toImport].push_back(outsideTranslationUnit); //Put this transation_unit in the scope as it's files name // Now go through and handle anything like import asdf: a; or import asdf: a,b; or import asdf: *; // We do this by looping through the children and adding links to them as the scope in the import node. If it's *, we add the entire translationUnit link. // Note that import affects scope in two ways: // (1) The other file's translationUnit is added to our translationUnit's scope under it's name // (2) The import node's scope contains the nodes indicated by the qualifiers after the import (i.e. the import a:b; or import a:*;) for (auto importQualifer : slice(importChildren, 1, -1)) { // Not the first child, that's the name of the file auto name = concatSymbolTree(importQualifer); if (name == "*") { std::vector*> tmp; tmp.push_back(outsideTranslationUnit); importNode->getDataRef()->scope["*"] = tmp; } else { bool found = false; for (auto outsideScopeEntry : outsideTranslationUnit->getDataRef()->scope) { if (name == outsideScopeEntry.first) { importNode->getDataRef()->scope[outsideScopeEntry.first] = outsideScopeEntry.second; found = true; } } // If it's not found yet, put it in as a empty vector for pass 3. // This makes sure that it does appear in the scope map, which is what we iterate through later. if (!found) importNode->getDataRef()->scope[name] = std::vector*>(); } } } } return translationUnit; } std::set ASTTransformation::parseTraits(NodeTree* traitsNode) { std::set traits; //Every other one b/c comma separated for (auto i : slice(traitsNode->getChildren(), 0, -1, 2)) traits.insert(concatSymbolTree(i)); return traits; } //Second pass defines data inside objects, outside declaration statements, and function prototypes (since we have type_defs now) void ASTTransformation::secondPass(NodeTree* ast, NodeTree* parseTree) { topScope = ast; //Top scope is maintained for templates, which need to add themselves to the top scope from where ever they are instantiated std::vector*> children = parseTree->getChildren(); //Go through and declare data internal to objects as well as all function prototypes (methods and otherwise) //Note that this pass can instantiate class templates for (NodeTree* i : children) { if (i->getDataRef()->getName() == "type_def") { if (i->getChildren()[0]->getData().getName() == "template_dec") // It's a template continue; //We've already set upt the class templates std::vector*> typedefChildren = i->getChildren(); std::string name = concatSymbolTree(typedefChildren[0]); NodeTree* typeDef = ast->getDataRef()->scope[name][0]; //No overloaded types (besides uninstantiated templates, which can have multiple versions based on types or specilizations) //It's an alias. Note that if typedefChildren.size() == 1 it's because its a regular class with no body, i.e. {} if (typedefChildren.size() > 1 && typedefChildren[1]->getData().getName() == "type") { Type* aliasedType = typeFromTypeNode(typedefChildren[1], ast, std::map()); typeDef->getDataRef()->valueType = aliasedType; typeDef->getDataRef()->scope["~enclosing_scope"][0] = aliasedType->typeDefinition; //So that object lookups find the right member. Note that this overrides translation_unit as a parent scope // std::cout << name << " alias's to " << aliasedType->typeDefinition << std::endl; // std::cout << "that is " << aliasedType->typeDefinition->getDataRef()->toString() << std::endl; continue; } //Do the inside of classes here secondPassDoClassInsides(typeDef, typedefChildren, std::map()); } else if (i->getDataRef()->getName() == "function") { //Do prototypes of functions ast->addChild(secondPassFunction(i, ast, std::map())); } else if (i->getDataRef()->getName() == "declaration_statement") { //Do declaration statements ast->addChild(secondPassDeclaration(i, ast, std::map())); } } } void ASTTransformation::secondPassDoClassInsides(NodeTree* typeDef, std::vector*> typedefChildren, std::map templateTypeReplacements) { //We pull out this functionality into a new function because this is used in typeFromTypeNode to partially instantiate templates for (NodeTree* j : typedefChildren) { if (j->getDataRef()->getName() == "declaration_statement") { //do declaration typeDef->addChild(secondPassDeclaration(j, typeDef, templateTypeReplacements)); } else if (j->getDataRef()->getName() == "function") { //do member method typeDef->addChild(secondPassFunction(j, typeDef, templateTypeReplacements)); } } } //This function may need to partially instantiate a class template NodeTree* ASTTransformation::secondPassDeclaration(NodeTree* from, NodeTree* scope, std::map templateTypeReplacements) { //Check here for method call (an error here) NodeTree* decStmt = new NodeTree("declaration_statement", ASTData(declaration_statement)); std::string newIdentifierStr = concatSymbolTree(from->getChildren()[1]); Type* identifierType = typeFromTypeNode(from->getChildren()[0], scope, templateTypeReplacements); std::cout << "Declaring an identifier " << newIdentifierStr << " to be of type " << identifierType->toString() << std::endl; NodeTree* newIdentifier = new NodeTree("identifier", ASTData(identifier, Symbol(newIdentifierStr, true), identifierType)); scope->getDataRef()->scope[newIdentifierStr].push_back(newIdentifier); decStmt->getDataRef()->scope["~enclosing_scope"].push_back(scope); decStmt->addChild(newIdentifier); return decStmt; } //This function may need to partially instantiate a class template NodeTree* ASTTransformation::secondPassFunction(NodeTree* from, NodeTree* scope, std::map templateTypeReplacements) { //If this is a function template std::vector*> children = from->getChildren(); NodeTree* functionDef = NULL; std::string functionName; if (children[0]->getData().getName() == "template_dec") { functionName = concatSymbolTree(children[2]); functionDef = new NodeTree("function", ASTData(function, Symbol(functionName, true), new Type(template_type, from))); scope->getDataRef()->scope[functionName].push_back(functionDef); functionDef->getDataRef()->scope["~enclosing_scope"].push_back(scope); std::map yetToBeInstantiatedTemplateTypes; //So that template types (like T) that have not been placed yet are found and given //a special Type() - baseType = template_type_type for (auto i : slice(children[0]->getChildren(), 1, -1, 2)) {//skip commas if (i->getChildren().size() == 1) yetToBeInstantiatedTemplateTypes[concatSymbolTree(i)] = new Type(template_type_type); //This may have to be combined with templateTypeReplacements if we do templated member functions inside of templated classes else //has traits yetToBeInstantiatedTemplateTypes[concatSymbolTree(i->getChildren()[0])] = new Type(template_type_type, parseTraits(i->getChildren()[1])); //This may have to be combined with templateTypeReplacements if we do templated member functions inside of templated classes } // Just to see, I don't think templated functions actually need parameters at this point, and we might not have enough info anyway... auto transChildren = transformChildren(slice(children,3,-2), std::set(), functionDef, std::vector(), yetToBeInstantiatedTemplateTypes); std::cout << "Template function " << functionName << " has these parameters: "; for (auto i : transChildren) std::cout << "||" << i->getDataRef()->toString() << "|| "; std::cout << "DoneList" << std::endl; functionDef->addChildren(transChildren); std::cout << "Finished Non-Instantiated Template function " << functionName << std::endl; return functionDef; } functionName = concatSymbolTree(children[1]); functionDef = new NodeTree("function", ASTData(function, Symbol(functionName, true), typeFromTypeNode(children[0], scope, templateTypeReplacements))); scope->getDataRef()->scope[functionName].push_back(functionDef); functionDef->getDataRef()->scope["~enclosing_scope"].push_back(scope); //We only do the parameter nodes. We don't do the body yet, as this is the secondPass auto transChildren = transformChildren(slice(children,2,-2), std::set(), functionDef, std::vector(), templateTypeReplacements); // std::cout << "REGULAR function " << functionName << " has " << transChildren.size() << " parameters: "; // for (auto i : transChildren) // std::cout << "||" << i->getDataRef()->toString() << "|| "; // std::cout << "DoneList" << std::endl; functionDef->addChildren(transChildren); return functionDef; } //Third pass redoes all imports to import the new function prototypes and identifiers void ASTTransformation::thirdPass(NodeTree* ast) { std::vector*> children = ast->getChildren(); //Go through and do all imports again for (NodeTree* i : children) { if (i->getDataRef()->type == import) { std::string toImport = i->getDataRef()->symbol.getName(); NodeTree* outsideTranslationUnit = importer->getUnit(toImport + ".krak"); //Now add all functions to scope std::cout << "Trying to re-import from " << toImport << std::endl; for (auto j = outsideTranslationUnit->getDataRef()->scope.begin(); j != outsideTranslationUnit->getDataRef()->scope.end(); j++) { std::cout << "Looking at " << j->first << std::endl; // If we're supposed to import this... (meaning that this name is in the scope already) if (i->getDataRef()->scope.find(j->first) == i->getDataRef()->scope.end()) continue; std::cout << "Looking through " << j->first << std::endl; for (auto k : j->second) if (k->getDataRef()->type == function || k->getDataRef()->type == identifier) std::cout << "Copying " << j->first << std::endl, i->getDataRef()->scope[j->first].push_back(k); else std::cout << "Not Copying " << j->first << std::endl; } } } } //The fourth pass finishes up by doing all function bodies void ASTTransformation::fourthPass(NodeTree* ast, NodeTree* parseTree) { topScope = ast; //Top scope is maintained for templates, which need to add themselves to the top scope from where ever they are instantiated std::vector*> children = parseTree->getChildren(); //Go through and finish both regular functions and class methods //Note that this pass can instantiate class AND function templates for (NodeTree* i : children) { if (i->getDataRef()->getName() == "type_def") { if (i->getChildren()[0]->getData().getName() == "template_dec") // It's a template continue; //We've already set up the class templates std::vector*> typedefChildren = i->getChildren(); std::string name = concatSymbolTree(typedefChildren[0]); NodeTree* typeDef = ast->getDataRef()->scope[name][0]; //No overloaded types //It's an alias. Note that typedefChildren.size() can equal one when it's a regular class with an empty body, i.e. {} if (typedefChildren.size() > 1 && typedefChildren[1]->getData().getName() == "type") continue; //We're done with aliases too //Do the inside of classes here for (NodeTree* j : typedefChildren) { if (j->getDataRef()->getName() == "function") { fourthPassFunction(j, searchScopeForFunctionDef(typeDef, j, std::map()), std::map()); //do member method } } } else if (i->getDataRef()->getName() == "function") { //Do prototypes of functions if (i->getChildren()[0]->getData().getName() == "template_dec") continue; //We've already set up function templates fourthPassFunction(i, searchScopeForFunctionDef(ast, i, std::map()), std::map()); } } // We do these here, in a loop, so that we can do mututally recursive definitions // even inside of class templates. As its methods may cause partial instantiation of // other class templates, we need to do this until the size no longer changes. std::vector*> classTemplates; int lastSize = 0; while (lastSize != ast->getDataRef()->scope.size()) { lastSize = ast->getDataRef()->scope.size(); classTemplates.clear(); for (auto i : ast->getDataRef()->scope) { if (i.second[0]->getDataRef()->type == type_def && i.second[0]->getDataRef()->valueType->templateTypeReplacement.size()) { classTemplates.push_back(i.second[0]); std::cout << "Saving " << i.second[0]->getDataRef()->toString() << " to instantiate." << std::endl; } } for (auto i : classTemplates) { Type* classTemplateType = i->getDataRef()->valueType; std::cout << "Instantiating template " << i->getDataRef()->toString() << std::endl; for (NodeTree* j : classTemplateType->templateDefinition->getChildren()) if (j->getDataRef()->getName() == "function") fourthPassFunction(j, searchScopeForFunctionDef(i, j, classTemplateType->templateTypeReplacement), classTemplateType->templateTypeReplacement); //do member method classTemplateType->templateTypeReplacement.clear(); // This template has been fully instantiated, clear it's map so it won't be instantiated again } } } //This function finds the right AST definition in a scope given its parseTree NodeTree* ASTTransformation::searchScopeForFunctionDef(NodeTree* scope, NodeTree* parseTree, std::map templateTypeReplacements) { std::string functionName = concatSymbolTree(parseTree->getChildren()[1]); std::vector types; std::vector*> children = parseTree->getChildren(); //Skipping the initial return type and identifier as well as the final code block std::cout << "\n Searching scope for function def, function is :" << concatSymbolTree(children[1]) << ", children size is " << children.size() << std::endl; for (int i = 2; i < children.size()-1; i+=2) { //Skip over commas std::cout << "Making type for lookup ||" << concatSymbolTree(children[i]) << "||" << std::endl; Type type = *typeFromTypeNode(children[i]->getChildren()[0], scope, templateTypeReplacements); std::cout << "Type made: " << type.toString() << std::endl; types.push_back(type); } std::cout << "About to search scope about " << concatSymbolTree(children[1]) << std::endl; NodeTree* result = functionLookup(scope, functionName, types); std::cout << "Done searching scope about " << concatSymbolTree(children[1]) << std::endl; return result; } //This function does the function bodies given its start (the prototype) //It is used in the fourth pass to finish things up //Note that it may instantiate class OR function templates, which need to be fully instantiated void ASTTransformation::fourthPassFunction(NodeTree* from, NodeTree* functionDef, std::map templateTypeReplacements) { NodeTree* codeBlock = from->getChildren()[from->getChildren().size()-1]; functionDef->addChild(transform(codeBlock, functionDef, std::vector(), templateTypeReplacements)); } NodeTree* ASTTransformation::transform(NodeTree* from) { //Set up top scope return transform(from, NULL, std::vector(), std::map()); } NodeTree* ASTTransformation::transform(NodeTree* from, NodeTree* scope, std::vector types, std::map templateTypeReplacements) { Symbol current = from->getData(); std::string name = current.getName(); NodeTree* newNode = NULL; std::vector*> children = from->getChildren(); std::set skipChildren; if (name == "identifier" || name == "scoped_identifier") { //Make sure we get the entire name std::string lookupName = concatSymbolTree(from); std::cout << "Looking up: " << lookupName << std::endl; if (types.size()) { newNode = functionLookup(scope, lookupName, types); if (newNode == NULL) { std::cerr << "scope lookup error! Could not find " << lookupName << " in identifier (functionLookup)" << std::endl; throw "LOOKUP ERROR: " + lookupName; } } else { auto possibleMatches = scopeLookup(scope, lookupName); if (!possibleMatches.size()) { std::cerr << "scope lookup error! Could not find " << lookupName << " in identifier (scopeLookup)" << std::endl; throw "LOOKUP ERROR: " + lookupName; } newNode = possibleMatches[0]; } return newNode; } else if (name == "type_def") { //If it is an alisis of a type std::string typeAlias; std::cout << "The scope here at type_def is " << scope->getDataRef()->toString() << std::endl; if (children[1]->getData().getName() == "type") { typeAlias = concatSymbolTree(children[0]); newNode = scope->getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit. //This is done so that types that reference each other can be declared in any order newNode->getDataRef()->valueType = typeFromTypeNode(children[1], scope, templateTypeReplacements); skipChildren.insert(0); //Don't want any children, it's unnecessary for ailising skipChildren.insert(1); } else { //Is a struct or class Type* objectType = NULL; if (children[0]->getData().getName() == "template_dec") { typeAlias = concatSymbolTree(children[1]); std::cout << "Template Type!"<getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit. //This is done so that types that reference each other can be declared in any order // std::cout << "typeAlias is " << typeAlias << " and newNode is " << newNode << std::endl; //So we give this typedef its name without any template types and make its type template_type, and point to this from node. //Then, when this template is instantiated, it will run transform on from with the types filled in. objectType = new Type(template_type, from); } else { typeAlias = concatSymbolTree(children[0]); newNode = scope->getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit. //This is done so that types that reference each other can be declared in any order objectType = new Type(newNode); skipChildren.insert(0); //Identifier lookup will be ourselves, as we just added ourselves to the scope } newNode->getDataRef()->valueType = objectType; //Type is self-referential since this is the definition } //scope->getDataRef()->scope[typeAlias].push_back(newNode); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); //Templates are done here. No need to go farther if (children[0]->getData().getName() == "template_dec") return newNode; scope = newNode; } else if (name == "function") { std::string functionName; /*MULTHERE*/ //If this is a function template if (children[0]->getData().getName() == "template_dec") { functionName = concatSymbolTree(children[2]); newNode = new NodeTree(name, ASTData(function, Symbol(functionName, true), new Type(template_type, from))); scope->getDataRef()->scope[functionName].push_back(newNode); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); std::map yetToBeInstantiatedTemplateTypes; //So that template types (like T) that have not been placed yet are found and given //a special Type() - baseType = template_type_type for (auto i : slice(children[0]->getChildren(), 1, -1, 2)) //skip commas yetToBeInstantiatedTemplateTypes[concatSymbolTree(i)] = new Type(template_type_type); //This may have to be combined with templateTypeReplacements if we do templated member functions inside of templated classes auto transChildren = transformChildren(slice(children,3,-2), std::set(), newNode, types, yetToBeInstantiatedTemplateTypes); std::cout << "Template function " << functionName << " has these parameters: "; for (auto i : transChildren) std::cout << "||" << i->getDataRef()->toString() << "|| "; std::cout << "??||" << std::endl; newNode->addChildren(transChildren); std::cout << "Finished Non-Instantiated Template function " << functionName << std::endl; return newNode; } functionName = concatSymbolTree(children[1]); for (auto child: children) std::cout << "Function child: " << child->getDataRef()->toString() << std::endl; newNode = new NodeTree(name, ASTData(function, Symbol(functionName, true), typeFromTypeNode(children[0], scope, templateTypeReplacements))); skipChildren.insert(0); skipChildren.insert(1); scope->getDataRef()->scope[functionName].push_back(newNode); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); scope = newNode; // auto transChildren = transformChildren(children, skipChildren, scope, types); // std::cout << functionName << " "; // for (auto i : transChildren) // std::cout << "||" << i->getDataRef()->toString() << "|| "; // std::cout << "??||" << std::endl; // newNode->addChildren(transChildren); // return newNode; std::cout << "finished function (kinda, not children) " << functionName << std::endl; } else if (name == "code_block") { newNode = new NodeTree(name, ASTData(code_block)); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); scope = newNode; } else if (name == "typed_parameter") { //newNode = transform(children[1]); //Transform to get the identifier std::string parameterName = concatSymbolTree(children[1]); std::cout << "Doing typed parameter " << parameterName << std::endl; //std::string typeString = concatSymbolTree(children[0]);//Get the type (left child) and set our new identifer to be that type newNode = new NodeTree("identifier", ASTData(identifier, Symbol(parameterName, true), typeFromTypeNode(children[0], scope, templateTypeReplacements))); scope->getDataRef()->scope[parameterName].push_back(newNode); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); std::cout << "Done doing typed_parameter " << parameterName << std::endl; return newNode; } else if (name == "boolean_expression" || name == "and_boolean_expression" || name == "bool_exp") { //If this is an actual part of an expression, not just a premoted term if (children.size() > 1) { //We do children first so we can do appropriate scope searching with types (yay operator overloading!) skipChildren.insert(1); std::vector*> transformedChildren = transformChildren(children, skipChildren, scope, types, templateTypeReplacements); std::string functionCallString = concatSymbolTree(children[1]); NodeTree* function = doFunction(scope, functionCallString, transformedChildren, templateTypeReplacements); if (function == NULL) { std::cerr << "scope lookup error! Could not find " << functionCallString << " in boolean stuff " << std::endl; throw "LOOKUP ERROR: " + functionCallString; } newNode = function; // newNode = new NodeTree(functionCallString, ASTData(function_call, function->getDataRef()->valueType)); // newNode->addChild(function); // First child of function call is a link to the function // newNode->addChildren(transformedChildren); } else { //std::cout << children.size() << std::endl; if (children.size() == 0) return new NodeTree(); return transform(children[0], scope, types, templateTypeReplacements); //Just a promoted term, so do child } //Here's the order of ops stuff } else if (name == "expression" || name == "shiftand" || name == "term" || name == "unarad" || name == "access_operation") { //If this is an actual part of an expression, not just a premoted child if (children.size() > 2) { NodeTree* lhs = transform(children[0], scope, std::vector(), templateTypeReplacements); //LHS does not inherit types NodeTree* rhs; if (name == "access_operation") { std::cout << "lhs is: " << lhs->getDataRef()->toString() << std::endl; rhs = transform(children[2], lhs->getDataRef()->valueType->typeDefinition, types, templateTypeReplacements); //If an access operation, then the right side will be in the lhs's type's scope } else rhs = transform(children[2], scope, types, templateTypeReplacements); std::string functionCallName = concatSymbolTree(children[1]); if (functionCallName == "[") functionCallName = "[]"; //fudge the lookup of brackets because only one is at children[1] (the other is at children[3]) //std::cout << "scope lookup from expression or similar" << std::endl; std::vector*> transformedChildren; transformedChildren.push_back(lhs); transformedChildren.push_back(rhs); newNode = doFunction(scope, functionCallName, transformedChildren, templateTypeReplacements); if (newNode == NULL) { std::cerr << "scope lookup error! Could not find " << functionCallName << " in expression " << std::endl; throw "LOOKUP ERROR: " + functionCallName; } return newNode; //skipChildren.insert(1); } else if (children.size() == 2) { //Is template instantiation return findOrInstantiateFunctionTemplate(children, scope, types, templateTypeReplacements); } else { return transform(children[0], scope, types, templateTypeReplacements); //Just a promoted child, so do it instead } } else if (name == "factor") { //Do factor here, as it has all the weird unary operators //If this is an actual part of an expression, not just a premoted child //NO SUPPORT FOR CASTING YET std::string funcName; if (children.size() == 2) { funcName = concatSymbolTree(children[0]); NodeTree* param; // I think this is where we look at pre vs post operators if (funcName == "*" || funcName == "&" || funcName == "++" || funcName == "--" || funcName == "+" || funcName == "-" || funcName == "!" || funcName == "~") param = transform(children[1], scope, types, templateTypeReplacements); else funcName = concatSymbolTree(children[1]), param = transform(children[0], scope, types, templateTypeReplacements); std::cout << "\t\t\t funcName= " << funcName << " param: " << param->getDataRef()->symbol.getName() << std::endl; //std::cout << "scope lookup from factor" << std::endl; std::vector*> transformedChildren; transformedChildren.push_back(param); NodeTree* function = doFunction(scope, funcName, transformedChildren, templateTypeReplacements); std::cout << "\t\t\t AFTER dofunction= " << std::endl; if (function == NULL) { std::cerr << "scope lookup error! Could not find " << funcName << " in factor " << std::endl; throw "LOOKUP ERROR: " + funcName; } return function; } else { return transform(children[0], scope, types, templateTypeReplacements); //Just a promoted child, so do it instead } } else if (name == "statement") { newNode = new NodeTree(name, ASTData(statement)); } else if (name == "if_statement") { newNode = new NodeTree(name, ASTData(if_statement)); } else if (name == "while_loop") { newNode = new NodeTree(name, ASTData(while_loop)); } else if (name == "for_loop") { newNode = new NodeTree(name, ASTData(for_loop)); } else if (name == "return_statement") { newNode = new NodeTree(name, ASTData(return_statement)); } else if (name == "assignment_statement") { newNode = new NodeTree(name, ASTData(assignment_statement)); std::string assignFuncName = concatSymbolTree(children[1]); if (assignFuncName == "=") { newNode->addChild(transform(children[0], scope, types, templateTypeReplacements)); newNode->addChild(transform(children[2], scope, types, templateTypeReplacements)); } else { //For assignments like += or *=, expand the syntatic sugar. NodeTree* lhs = transform(children[0], scope, types, templateTypeReplacements); NodeTree* rhs = transform(children[2], scope, types, templateTypeReplacements); std::vector*> transformedChildren; transformedChildren.push_back(lhs); transformedChildren.push_back(rhs); std::string functionName = assignFuncName.substr(0,1); NodeTree* operatorCall = doFunction(scope, functionName, transformedChildren, templateTypeReplacements); if (operatorCall == NULL) { std::cerr << "scope lookup error! Could not find " << functionName << " in assignment_statement " << std::endl; throw "LOOKUP ERROR: " + functionName; } newNode->addChild(lhs); newNode->addChild(operatorCall); } return newNode; } else if (name == "declaration_statement") { newNode = new NodeTree(name, ASTData(declaration_statement)); // NodeTree* newIdentifier = transform(children[1], scope); //Transform the identifier // newIdentifier->getDataRef()->valueType = Type(concatSymbolTree(children[0]));//set the type of the identifier std::string newIdentifierStr = concatSymbolTree(children[1]); Type* identifierType = typeFromTypeNode(children[0], scope, templateTypeReplacements); std::cout << "Declaring an identifier " << newIdentifierStr << " to be of type " << identifierType->toString() << std::endl; NodeTree* newIdentifier = new NodeTree("identifier", ASTData(identifier, Symbol(newIdentifierStr, true), identifierType)); scope->getDataRef()->scope[newIdentifierStr].push_back(newIdentifier); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); newNode->addChild(newIdentifier); if (children.size() > 2 && concatSymbolTree(children[2]) == ".") { //A bit of a special case for declarations - if there's anything after just the normal 1 node declaration, it's either //an expression that is assigned to the declaration (int a = 4;) or a member call (Object a.constructAThing()) //This code is a simplified version of the code in function_call with respect to access_operation. //Note that in this case, what is lhs there is our newIdentifier here (the declaration of the left side of the access operation) auto sliced = slice(children, 4, -1); std::vector*> initPositionFuncParams = transformChildren(sliced, std::set(), scope, types, templateTypeReplacements); NodeTree* rhs = transform(children[3], identifierType->typeDefinition, mapNodesToTypes(initPositionFuncParams), templateTypeReplacements); //If an access operation, then the right side will be in the lhs's type's scope std::vector*> transformedChildren; transformedChildren.push_back(newIdentifier); transformedChildren.push_back(rhs); NodeTree* accessFuncCall = doFunction(scope, ".", transformedChildren, templateTypeReplacements); accessFuncCall->getDataRef()->valueType = rhs->getDataRef()->valueType; //Now we borrow a bit of code from function_call below to actually use our new accessFuncCall to setup a "initPosition" function call //that will follow the identifier in this declaration node std::string initPosFuncName = newIdentifierStr + "." + concatSymbolTree(children[3]); NodeTree* initPositionFuncCall = new NodeTree(initPosFuncName, ASTData(function_call, Symbol(initPosFuncName, true))); initPositionFuncCall->addChild(accessFuncCall); initPositionFuncCall->getDataRef()->valueType = accessFuncCall->getDataRef()->valueType; initPositionFuncCall->addChildren(initPositionFuncParams); newNode->addChild(initPositionFuncCall); return newNode; } skipChildren.insert(0); //These, the type and the identifier, have been taken care of. skipChildren.insert(1); newNode->addChildren(transformChildren(children, skipChildren, scope, types, templateTypeReplacements)); return newNode; } else if (name == "if_comp") { newNode = new NodeTree(name, ASTData(if_comp)); newNode->addChild(new NodeTree("identifier", ASTData(identifier, Symbol(concatSymbolTree(children[0]),true)))); skipChildren.insert(0); //Don't do the identifier. The identifier lookup will fail. That's why we do it here. } else if (name == "simple_passthrough") { newNode = new NodeTree(name, ASTData(simple_passthrough)); } else if (name == "function_call") { std::string functionCallName = concatSymbolTree(children[0]); newNode = new NodeTree(functionCallName, ASTData(function_call, Symbol(functionCallName, true))); skipChildren.insert(0); std::vector*> transformedChildren = transformChildren(children, skipChildren, scope, types, templateTypeReplacements); std::cout << "scope lookup from function_call: " << functionCallName << std::endl; for (auto i : children) std::cout << i << " : " << i->getName() << " : " << i->getDataRef()->getName() << std::endl; NodeTree* function = transform(children[0], scope, mapNodesToTypes(transformedChildren), templateTypeReplacements); std::cout << "The thing: " << function << " : " << function->getName() << std::endl; for (auto i : function->getChildren()) std::cout << i->getName() << " "; std::cout << std::endl; newNode->addChild(function); newNode->getDataRef()->valueType = function->getDataRef()->valueType; newNode->addChildren(transformedChildren); return newNode; } else if (name == "parameter") { return transform(children[0], scope, types, templateTypeReplacements); //Don't need a parameter node, just the value } else if (name == "type") { std::string theConcat = concatSymbolTree(from); //We have no symbol, so this will concat our children newNode = new NodeTree(name, ASTData(value, Symbol(theConcat, true), typeFromTypeNode(from, scope, templateTypeReplacements))); } else if (name == "number") { return transform(children[0], scope, types, templateTypeReplacements); } else if (name == "integer") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(from), true), new Type(integer))); } else if (name == "floating_literal") { std::string literal = concatSymbolTree(from); ValueType type = double_percision; if (literal.back() == 'f') { literal = literal.substr(0, literal.length()-1); type = floating; } else if (literal.back() == 'd') { literal = literal.substr(0, literal.length()-1); type = double_percision; } newNode = new NodeTree(name, ASTData(value, Symbol(literal, true), new Type(type))); } else if (name == "char") { //Is this correct? This might be a useless old thing newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 1))); //Indirection of 1 for array } else if (name == "string" || name == "triple_quoted_string") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 1))); //Indirection of 1 for array } else if (name == "character") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 0))); //Indirection of 0 for character } else if (name == "bool") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(boolean, 0))); //Indirection of 0 for character } else if (name == "AmbiguityPackOuter" || name == "AmbiguityPackInner") { std::cerr << "///////////////////////////////////////////////////////////////////////////////" << std::endl; std::cerr << "Ambigious program when parsed by this grammer! This is a bug, please report it." << std::endl; std::cerr << "///////////////////////////////////////////////////////////////////////////////" << std::endl; throw "Ambigious parse!"; } else { // Should get rid of this eventually. Right now it handles cases like sign, alpha, a comma, etc std::cout << "Unhandled syntax node: " << name << std::endl; return new NodeTree(); } //Do all children but the ones we skip newNode->addChildren(transformChildren(children, skipChildren, scope, types, templateTypeReplacements)); return newNode; } //We use this functionality a lot at different places std::vector*> ASTTransformation::transformChildren(std::vector*> children, std::set skipChildren, NodeTree* scope, std::vector types, std::map templateTypeReplacements) { std::vector*> transformedChildren; // In general, iterate through children and do them. Might not do this for all children. for (int i = 0; i < children.size(); i++) { if (skipChildren.find(i) == skipChildren.end()) { NodeTree* transChild = transform(children[i], scope, types, templateTypeReplacements); if (transChild->getDataRef()->type) //Only add the children that have a real ASTData::ASTType, that is, legit ASTData. transformedChildren.push_back(transChild); else delete transChild; } } return transformedChildren; } //Extract types from already transformed nodes std::vector ASTTransformation::mapNodesToTypes(std::vector*> nodes) { std::vector types; for (auto i : nodes) { std::cout << i->getDataRef()->toString() << std::endl; types.push_back(*(i->getDataRef()->valueType)); } return types; } //Simple way to extract strings from syntax trees. Used often for identifiers, strings, types std::string ASTTransformation::concatSymbolTree(NodeTree* root) { std::string concatString; std::string ourValue = root->getDataRef()->getValue(); if (ourValue != "NoValue") concatString += ourValue; std::vector*> children = root->getChildren(); for (int i = 0; i < children.size(); i++) { concatString += concatSymbolTree(children[i]); } return concatString; } //We pass in the actual children (parameters) to allow us to handle overloaded operator methods (where a parameter is actually the scope of the method) NodeTree* ASTTransformation::doFunction(NodeTree* scope, std::string lookup, std::vector*> nodes, std::map templateTypeReplacements) { auto LLElementIterator = languageLevelOperators.find(lookup); NodeTree* newNode; if (LLElementIterator != languageLevelOperators.end()) { std::cout << "Checking for early method level operator overload" << std::endl; std::string lookupOp = "operator" + lookup; for (auto i : nodes) std::cout << i->getDataRef()->toString() << " "; std::cout << std::endl; NodeTree* operatorMethod = NULL; if (nodes[0]->getDataRef()->valueType && nodes[0]->getDataRef()->valueType->typeDefinition) operatorMethod = functionLookup(nodes[0]->getDataRef()->valueType->typeDefinition, lookupOp, mapNodesToTypes(slice(nodes,1,-1))); if (operatorMethod) { //Ok, so we construct std::cout << "Early method level operator was found" << std::endl; //return operatorMethod; NodeTree* newNode = new NodeTree(lookupOp, ASTData(function_call, Symbol(lookupOp, true))); NodeTree* dotFunctionCall = new NodeTree(".", ASTData(function_call, Symbol(".", true))); dotFunctionCall->addChild(languageLevelOperators["."][0]); //function definition dotFunctionCall->addChild(nodes[0]); // The object whose method we're calling dotFunctionCall->addChild(operatorMethod); //The method we're calling newNode->addChild(dotFunctionCall); // First child of function call is a link to the function definition newNode->addChildren(slice(nodes, 1, -1)); //The rest of the parameters to the operator //Set the value of this function call newNode->getDataRef()->valueType = operatorMethod->getDataRef()->valueType; return newNode; } std::cout << "Early method level operator was NOT found" << std::endl; } newNode = new NodeTree(lookup, ASTData(function_call, Symbol(lookup, true))); NodeTree* function = functionLookup(scope, lookup, mapNodesToTypes(nodes)); std::cout << "Num of newNode children " << newNode->getChildren().size() << std::endl; newNode->addChild(function); std::cout << "Num of newNode children " << newNode->getChildren().size() << std::endl; newNode->addChildren(nodes); std::cout << "Num of newNode children " << newNode->getChildren().size() << std::endl; std::cout << "nodes " << nodes.size() << std::endl; //Specially handle dereference and address of to assign the correct type //We need some significant other type corrections here, maybe to the point of being their own function. (int + float, etc.) std::cout << "the passed in nodes" << std::endl; for (auto i : nodes) std::cout << i->getDataRef()->toString() << " "; std::cout< oldTypes = mapNodesToTypes(nodes); std::cout << "the oldtypes size" << oldTypes.size() << std::endl; if ((nodes.size() != 2 && lookup == "*") || lookup == "&" || lookup == "[]") { Type* newType = oldTypes[0].clone(); if (lookup == "*" || lookup == "[]") newType->decreaseIndirection(); else newType->increaseIndirection(); newNode->getDataRef()->valueType = newType, std::cout << "Operator " + lookup << " is altering indirection from " << oldTypes[0].toString() << " to " << newType->toString() << std::endl; } else { newNode->getDataRef()->valueType = function->getDataRef()->valueType, std::cout << "Some other ||" << lookup << "||" << std::endl; } // Set the value of this function call if it has not already been set // It's important that it's the last parameter, the rhs if it has one // because of the . operator, etc if (newNode->getDataRef()->valueType == NULL) { std::cout << "The value type from doFunction was null! (for " << lookup << ")" << std::endl; newNode->getDataRef()->valueType = oldTypes[oldTypes.size()-1].clone(); std::cout << "function call to " << lookup << " - " << newNode->getName() << " is now " << newNode->getDataRef()->valueType << std::endl; } return newNode; } //Lookup a function that takes in parameters matching the types passed in NodeTree* ASTTransformation::functionLookup(NodeTree* scope, std::string lookup, std::vector types) { //We first check to see if it's one of the special reserved identifiers (only this, for now) and return early if it is. auto LLElementIterator = languageLevelReservedWords.find(lookup); if (LLElementIterator != languageLevelReservedWords.end()) { std::cout << "found it at language level as reserved word." << std::endl; return LLElementIterator->second[0]; } //We search the languageLevelOperators to see if it's an operator. If so, we modifiy the lookup with a preceding "operator" LLElementIterator = languageLevelOperators.find(lookup); if (LLElementIterator != languageLevelOperators.end()) lookup = "operator" + lookup; //Look up the name std::vector*> possibleMatches = scopeLookup(scope, lookup); std::cout << "Function lookup of " << lookup << " has " << possibleMatches.size() << " possible matches." << std::endl; if (possibleMatches.size()) { for (auto i : possibleMatches) { //We're not looking for types if (i->getDataRef()->type == type_def) continue; std::vector*> children = i->getChildren(); //We subtract one from the children to get the type size only if there is at least one child AND // the last node is actually a body node, as it may not have been generated yet if we're in the body //and this function is recursive or if this is a non-instantiated template function int numTypes = (children.size() > 0 && children[children.size()-1]->getDataRef()->type == code_block) ? children.size()-1 : children.size(); if (types.size() != numTypes) { std::cout << "Type sizes do not match between two " << lookup << "(" << types.size() << "," << numTypes << "), types are: "; for (auto j : types) std::cout << j.toString() << " "; std::cout << std::endl; std::cout << "Versus" << std::endl; for (int j = 0; j < numTypes; j++) { std::cout << " vs " << children[j]->getDataRef()->valueType->toString() << std::endl; } for (auto child: children) std::cout << "\t" << child->getDataRef()->toString() << std::endl; std::cout << std::endl; continue; } bool typesMatch = true; for (int j = 0; j < types.size(); j++) { Type* tmpType = children[j]->getDataRef()->valueType; //Don't worry if types don't match if it's a template type // std::cout << "Checking for segfaults, we have" << std::endl; // std::cout << types[j].toString() << std::endl; // std::cout << tmpType->toString() << std::endl; // std::cout << "Done!" << std::endl; if (types[j] != *tmpType && tmpType->baseType != template_type_type) { typesMatch = false; std::cout << "Types do not match between two " << lookup << " " << types[j].toString(); std::cout << " vs " << children[j]->getDataRef()->valueType->toString() << std::endl; break; } } if (typesMatch) return i; } } std::cout << "could not find " << lookup << " in standard scopes, checking for operator" << std::endl; //Note that we don't check for types. At some point we should, as we don't know how to add objects/structs without overloaded operators, etc //Also, we've already searched for the element because this is also how we keep track of operator overloading if (LLElementIterator != languageLevelOperators.end()) { std::cout << "found it at language level as operator." << std::endl; return LLElementIterator->second[0]; } std::cout << "Did not find, returning NULL" << std::endl; return NULL; } //Lookup class templates. It evaluates possible matches on traits NodeTree* ASTTransformation::templateClassLookup(NodeTree* scope, std::string lookup, std::vector templateInstantiationTypes) { std::set*> mostFittingTemplates; int bestNumTraitsSatisfied = -1; auto possibleMatches = scopeLookup(scope, lookup); std::cout << "Template Class instantiation has " << possibleMatches.size() << " possible matches." << std::endl; for (auto i : possibleMatches) { NodeTree* templateSyntaxTree = i->getDataRef()->valueType->templateDefinition; auto nameTraitsPairs = makeTemplateNameTraitPairs(templateSyntaxTree->getChildren()[0]); //Check if sizes match between the placeholder and actual template types if (nameTraitsPairs.size() != templateInstantiationTypes.size()) continue; bool traitsEqual = true; int typeIndex = 0; int currentTraitsSatisfied = 0; for (auto j : nameTraitsPairs) { if (!subset(j.second, templateInstantiationTypes[typeIndex]->traits)) { traitsEqual = false; std::cout << "Traits not subset for " << j.first << " and " << templateInstantiationTypes[typeIndex]->toString() << ": "; //std::cout << baseType << " " << indirection << " " << typeDefinition << " " << templateDefinition << " " << traits << ; std::copy(j.second.begin(), j.second.end(), std::ostream_iterator(std::cout, " ")); std::cout << " vs "; std::copy(templateInstantiationTypes[typeIndex]->traits.begin(), templateInstantiationTypes[typeIndex]->traits.end(), std::ostream_iterator(std::cout, " ")); std::cout << std::endl; break; } else { std::cout << "Traits ARE subset for " << j.first << " and " << templateInstantiationTypes[typeIndex]->toString() << ": "; //std::cout << baseType << " " << indirection << " " << typeDefinition << " " << templateDefinition << " " << traits << ; std::copy(j.second.begin(), j.second.end(), std::ostream_iterator(std::cout, " ")); std::cout << " vs "; std::copy(templateInstantiationTypes[typeIndex]->traits.begin(), templateInstantiationTypes[typeIndex]->traits.end(), std::ostream_iterator(std::cout, " ")); std::cout << std::endl; } currentTraitsSatisfied += j.second.size(); typeIndex++; } if (!traitsEqual) continue; //See if this is a better match than the current best if (currentTraitsSatisfied > bestNumTraitsSatisfied) { mostFittingTemplates.clear(); std::cout << "Class satisfying " << currentTraitsSatisfied << " beats previous " << bestNumTraitsSatisfied << std::endl; bestNumTraitsSatisfied = currentTraitsSatisfied; } else if (currentTraitsSatisfied < bestNumTraitsSatisfied) continue; mostFittingTemplates.insert(i); std::cout << "Current class fits, satisfying " << currentTraitsSatisfied << " traits" << std::endl; } if (!mostFittingTemplates.size()) { std::cout << "No template classes fit for " << lookup << "!" << std::endl; throw "No matching template classes"; } else if (mostFittingTemplates.size() > 1) { std::cout << "Multiple template classes fit with equal number of traits satisfied for " << lookup << "!" << std::endl; throw "Multiple matching template classes"; } return *mostFittingTemplates.begin(); } //Lookup function for template functions. It has some extra concerns compared to function lookup, namely traits NodeTree* ASTTransformation::templateFunctionLookup(NodeTree* scope, std::string lookup, std::vector templateInstantiationTypes, std::vector types) { std::set*> mostFittingTemplates; int bestNumTraitsSatisfied = -1; auto possibleMatches = scopeLookup(scope, lookup); std::cout << "Template Function instantiation has " << possibleMatches.size() << " possible matches." << std::endl; int index = 1; for (auto i : possibleMatches) { std::cout << "Possibility " << index++ << std::endl; NodeTree* templateSyntaxTree = i->getDataRef()->valueType->templateDefinition; if (!templateSyntaxTree) { std::cout << "Not a template, skipping" << std::endl; continue; } auto nameTraitsPairs = makeTemplateNameTraitPairs(templateSyntaxTree->getChildren()[0]); //Check if sizes match between the placeholder and actual template types if (nameTraitsPairs.size() != templateInstantiationTypes.size()) continue; std::map typeMap; bool traitsEqual = true; int typeIndex = 0; int currentTraitsSatisfied = 0; for (auto j : nameTraitsPairs) { if (!subset(j.second, templateInstantiationTypes[typeIndex]->traits)) { traitsEqual = false; std::cout << "Traits not a subset for " << j.first << " and " << templateInstantiationTypes[typeIndex]->toString() << ": "; std::copy(j.second.begin(), j.second.end(), std::ostream_iterator(std::cout, " ")); std::cout << " vs "; std::copy(templateInstantiationTypes[typeIndex]->traits.begin(), templateInstantiationTypes[typeIndex]->traits.end(), std::ostream_iterator(std::cout, " ")); std::cout << std::endl; break; } else { std::cout << "Traits ARE a subset for " << j.first << " and " << templateInstantiationTypes[typeIndex]->toString() << ": "; std::copy(j.second.begin(), j.second.end(), std::ostream_iterator(std::cout, " ")); std::cout << " vs "; std::copy(templateInstantiationTypes[typeIndex]->traits.begin(), templateInstantiationTypes[typeIndex]->traits.end(), std::ostream_iterator(std::cout, " ")); std::cout << std::endl; } //As we go, build up the typeMap for when we transform the parameters for parameter checking typeMap[j.first] = templateInstantiationTypes[typeIndex]; currentTraitsSatisfied += j.second.size(); typeIndex++; } if (!traitsEqual) continue; std::vector*> functionParameters = slice(templateSyntaxTree->getChildren(), 3, -2, 2); //skip template, return type, name, intervening commas, and the code block std::cout << functionParameters.size() << " " << types.size() << std::endl; if (functionParameters.size() != types.size()) continue; bool parameterTypesMatch = true; for (int j = 0; j < functionParameters.size(); j++) { auto paramType = typeFromTypeNode(functionParameters[j]->getChildren()[0], scope, typeMap); std::cout << "Template param type: " << paramType->toString() << " : Needed Type: " << types[j].toString() << std::endl; if (*paramType != types[j]) { parameterTypesMatch = false; std::cout << "Not equal template param: " << paramType->toString() << " : Needed Type actual param: " << types[j].toString() << std::endl; break; } } if (!parameterTypesMatch) continue; //See if this is a better match than the current best if (currentTraitsSatisfied > bestNumTraitsSatisfied) { mostFittingTemplates.clear(); std::cout << "Function satisfying " << currentTraitsSatisfied << " beats previous " << bestNumTraitsSatisfied << std::endl; bestNumTraitsSatisfied = currentTraitsSatisfied; } else if (currentTraitsSatisfied < bestNumTraitsSatisfied) continue; mostFittingTemplates.insert(i); std::cout << "Current function fits, satisfying " << currentTraitsSatisfied << " traits" << std::endl; } if (!mostFittingTemplates.size()) { std::cerr << "No template functions fit for " << lookup << "!" << std::endl; throw "No matching template functions"; } else if (mostFittingTemplates.size() > 1) { std::cerr << "Multiple template functions fit with equal number of traits satisfied for " << lookup << "!" << std::endl; throw "Multiple matching template functions"; } return *mostFittingTemplates.begin(); } //Extract pairs of type names and traits std::vector>> ASTTransformation::makeTemplateNameTraitPairs(NodeTree* templateNode) { std::vector*> templateParams = slice(templateNode->getChildren(), 1, -2, 2); //Skip <, >, and interveaning commas std::vector>> typePairs; for (auto i : templateParams) { if (i->getChildren().size() > 1) typePairs.push_back(std::make_pair(concatSymbolTree(i->getChildren()[0]), parseTraits(i->getChildren()[1]))); else typePairs.push_back(std::make_pair(concatSymbolTree(i->getChildren()[0]), std::set())); } return typePairs; } std::map ASTTransformation::makeTemplateFunctionTypeMap(NodeTree* templateNode, std::vector types) { auto typePairs = makeTemplateNameTraitPairs(templateNode); std::map typeMap; int typeIndex = 0; std::cout << typePairs.size() << " " << types.size() << std::endl; for (auto i : typePairs) { typeMap[i.first] = types[typeIndex]; std::cout << "Mapping " << i.first << " to " << types[typeIndex]->toString() << std::endl; typeIndex++; } return typeMap; } // We need recursion protection std::vector*> ASTTransformation::scopeLookup(NodeTree* scope, std::string lookup, bool includeModules) { return scopeLookup(scope, lookup, includeModules, std::vector*>()); } std::vector*> ASTTransformation::scopeLookup(NodeTree* scope, std::string lookup, bool includeModules, std::vector*> visited) { std::cout << "Scp][e looking up " << lookup << std::endl; // Don't visit this node again when looking for the smae lookup. Note that we don't prevent coming back for the scope operator, as that should be able to come back. visited.push_back(scope); //We first check to see if it's one of the special reserved identifiers (only this, for now) and return early if it is. auto LLElementIterator = languageLevelReservedWords.find(lookup); if (LLElementIterator != languageLevelReservedWords.end()) { std::cout << "found it at language level as reserved word." << std::endl; return LLElementIterator->second; } std::vector*> matches; // First, we check for scope operator (::) but only if occurs before a "<" as this would signal the beginning of a template instatiation inside type // If we find it, we look up the left side of the :: and then use the resuts as the scope for looking up the right side, recursively. size_t scopeOpPos = lookup.find("::"); size_t angleBrktPos = lookup.find("<"); if (scopeOpPos != std::string::npos && (angleBrktPos == std::string::npos || scopeOpPos < angleBrktPos)) { std::cout << "Has :: operator, doing left then right" << std::endl; for (auto scopeMatch : scopeLookup(scope, strSlice(lookup, 0, scopeOpPos), true)) { std::cout << "Trying right side with found left side " << scopeMatch->getDataRef()->toString() << std::endl; auto addMatches = scopeLookup(scopeMatch, strSlice(lookup, scopeOpPos+2, -1), includeModules); matches.insert(matches.end(), addMatches.begin(), addMatches.end()); } return matches; } std::map*>> scopeMap = scope->getDataRef()->scope; auto possibleMatches = scopeMap.find(lookup); if (possibleMatches != scopeMap.end()) { for (auto i : possibleMatches->second) if (includeModules || i->getName() != "translation_unit") matches.push_back(i); std::cout << "Found " << possibleMatches->second.size() << " match(s) at " << scope->getDataRef()->toString() << std::endl; } // Add results from our enclosing scope, if it exists. // If it doesn't we should be at the top of a translation unit, and we should check the scope of import statements. auto enclosingIterator = scopeMap.find("~enclosing_scope"); if (enclosingIterator != scopeMap.end()) { std::vector*> upperResult = scopeLookup(enclosingIterator->second[0], lookup, includeModules, visited); matches.insert(matches.end(), upperResult.begin(), upperResult.end()); } else { // Ok, let's iterate through and check for imports for (auto child : scope->getChildren()) { if (child->getDataRef()->type == import) { auto importScope = child->getDataRef()->scope; // Check if there is a match named explicily in the import's scope (i.e. looking for a and the import is import somefile: a;) // If so, add it's members to our matches auto importLookupItr = importScope.find(lookup); if (importLookupItr != importScope.end()) { auto addMatches = importLookupItr->second; matches.insert(matches.end(), addMatches.begin(), addMatches.end()); } // Check if there is an uncionditional import to follow (i.e. import somefile: *;) // If so, continue the search in that scope auto importStarItr = importScope.find("*"); if (importStarItr != importScope.end()) { auto addMatches = scopeLookup(importStarItr->second[0], lookup, includeModules, visited); matches.insert(matches.end(), addMatches.begin(), addMatches.end()); } } } } return matches; } // Find the translation unit that is the top of the passed in node NodeTree* ASTTransformation::getUpperTranslationUnit(NodeTree* node) { auto scope = node->getDataRef()->scope; auto iter = scope.find("~enclosing_scope"); while(iter != scope.end()) { node = iter->second[0]; scope = node->getDataRef()->scope; iter = scope.find("~enclosing_scope"); } return node; } //Create a type from a syntax tree. This can get complicated with templates Type* ASTTransformation::typeFromTypeNode(NodeTree* typeNode, NodeTree* scope, std::map templateTypeReplacements) { std::string typeIn = concatSymbolTree(typeNode); int indirection = 0; ValueType baseType; NodeTree* typeDefinition = NULL; std::set traits; while (typeIn[typeIn.size() - indirection - 1] == '*') indirection++; std::string edited = strSlice(typeIn, 0, -(indirection + 1)); if (edited == "void") baseType = void_type; else if (edited == "bool") baseType = boolean; else if (edited == "int") baseType = integer; else if (edited == "float") baseType = floating; else if (edited == "double") baseType = double_percision; else if (edited == "char") baseType = character; else { baseType = none; auto possibleMatches = scopeLookup(scope, edited); if (possibleMatches.size()) { typeDefinition = possibleMatches[0]; traits = typeDefinition->getDataRef()->valueType->traits; } //So either this is an uninstatiated template class type, or this is literally a template type T, and we should get it from our //templateTypeReplacements map. We try this first if (templateTypeReplacements.find(edited) != templateTypeReplacements.end()) { std::cout << "Template type! (" << edited << ")" << std::endl; Type* templateTypeReplacement = templateTypeReplacements[edited]->clone(); templateTypeReplacement->modifyIndirection(indirection); return templateTypeReplacement; } std::cout << edited << " was not found in templateTypeReplacements" << std::endl; std::cout << "templateTypeReplacements consists of : "; for (auto i : templateTypeReplacements) std::cout << i.first << " "; std::cout << std::endl; // getChildren()[1] is \* because of pointer instead of template_inst // To counter this, for every indirection we step down a level for (int i = 0; i < indirection; i++) typeNode = typeNode->getChildren()[0]; std::cout << possibleMatches.size() << " " << typeNode->getChildren().size() << std::endl; if (typeNode->getChildren().size() > 1) std::cout << typeNode->getChildren()[1]->getDataRef()->getName() << std::endl; //If not, we better instantiate it and then add it to the highest (not current) scope if (possibleMatches.size() == 0 && typeNode->getChildren().size() > 1 && typeNode->getChildren()[1]->getData().getName() == "template_inst") { std::cout << "Template type: " << edited << " not yet instantiated" << std::endl; //We pull out the replacement types first so that we can choose the correct possibly overloaded template std::vector*> templateParamInstantiationNodes = slice(typeNode->getChildren()[1]->getChildren(), 1, -2, 2); //same std::vector templateParamInstantiationTypes; std::string instTypeString = ""; for (int i = 0; i < templateParamInstantiationNodes.size(); i++) { Type* instType = typeFromTypeNode(templateParamInstantiationNodes[i], scope, templateTypeReplacements); /******************************************************************************* * WE RETURN EARLY IF ONE OF OUR REPLACEMENT INST TYPES IS TEMPLATE_TYPE_TYPE * WE DO THIS BECAUSE WE CAN'T ACTUALLY INSTATNTIATE WITH THIS. * THIS CAN HAPPEN IN THE FOLLOWING SITUATIONS. * template |T| fun(|vec| a) { return a.at(0); } * etc *******************************************************************************/ if (instType->baseType == template_type_type) return instType; templateParamInstantiationTypes.push_back(instType); instTypeString += (instTypeString == "") ? instType->toString(false) : "," + instType->toString(false); } //Finish creating the new name for this instantiation std::string classNameWithoutTemplate = concatSymbolTree(typeNode->getChildren()[0]); std::string templateLookupName = classNameWithoutTemplate + "<" + instTypeString + ">"; // Recheck for prior definition here, now that we have the true name. possibleMatches = scopeLookup(scope, templateLookupName); if (possibleMatches.size()) { typeDefinition = possibleMatches[0]; traits = typeDefinition->getDataRef()->valueType->traits; std::cout << "Found already instantiated template of " << templateLookupName << " at second check" << std::endl; } else { std::cout << "Did not find already instantiated template of " << templateLookupName << " at second check" << std::endl; //Look up this template's plain definition. It's type has the syntax tree that we need to parse NodeTree* templateDefinition = templateClassLookup(scope, concatSymbolTree(typeNode->getChildren()[0]), templateParamInstantiationTypes); if (templateDefinition == NULL) std::cout << "Template definition is null!" << std::endl; else std::cout << "Template definition is not null!" << std::endl; std::string fullyInstantiatedName = templateDefinition->getDataRef()->symbol.getName() + "<" + instTypeString + ">"; NodeTree* templateSyntaxTree = templateDefinition->getDataRef()->valueType->templateDefinition; //Create a new map of template type names to actual types. std::vector*> templateParamPlaceholderNodes = slice(templateSyntaxTree->getChildren()[0]->getChildren(), 1, -2, 2); //Don't get beginning or end for < or >, skip commas in the middle std::map newTemplateTypeReplacement; for (int i = 0; i < templateParamInstantiationTypes.size(); i++) newTemplateTypeReplacement[concatSymbolTree(templateParamPlaceholderNodes[i])] = templateParamInstantiationTypes[i]; typeDefinition = new NodeTree("type_def", ASTData(type_def, Symbol(fullyInstantiatedName, true, fullyInstantiatedName))); traits = templateDefinition->getDataRef()->valueType->traits; // We have the same traits as the template definition Type* selfType = new Type(typeDefinition, traits); // Type is self-referential since this is the definition. typeDefinition->getDataRef()->valueType = selfType; //Note that we're adding to the current top scope. This makes it more efficient by preventing multiple instantiation and should not cause any problems //It also makes sure it gets generated in the right place //std::cout << "Adding to top scope and template's origional scope with fullyInstantiatedName " << fullyInstantiatedName << std::endl; //topScope->getDataRef()->scope[fullyInstantiatedName].push_back(typeDefinition); //topScope->addChild(typeDefinition); Add this object the the highest scope's // Actually, let's just put it in the scope of the origional template, which should work just fine under the new scoping rules and will ACTUALLY prevent multiple instantiation. // At least, hopefully it will if we also check it's scope for it. Which I think it should be anyway. Yeah, I think it should work. std::cout << "Adding to template top scope and template's origional scope with fullyInstantiatedName " << fullyInstantiatedName << std::endl; auto templateTopScope = getUpperTranslationUnit(templateDefinition); templateTopScope->getDataRef()->scope[fullyInstantiatedName].push_back(typeDefinition); templateTopScope->addChild(typeDefinition); // Add this object the the highest scope's //NodeTree* templateHighScope = templateDefinition->getDataRef()->scope["~enclosing_scope"][0]; //if (topScope != templateHighScope) //templateHighScope->getDataRef()->scope[fullyInstantiatedName].push_back(typeDefinition); // We put it in the scope of the template so that it can find itself (as it's scope is its template definition) templateDefinition->getDataRef()->scope[fullyInstantiatedName].push_back(typeDefinition); //Note that the instantiated template's scope is the template's definition. typeDefinition->getDataRef()->scope["~enclosing_scope"].push_back(templateDefinition); // We only partially instantiate templates no matter what now // They are all fully instantiated in the loop at the end of the 4th pass // This is done for code simplicity and so that that loop can do template class methods // that instantiate other templates that instantiate other templates while still retaining the // deferred method allowing us to correctly instantiate multiple levels of mututally recursive definitions. selfType->templateDefinition = templateSyntaxTree; //We're going to still need this when we finish instantiating selfType->templateTypeReplacement = newTemplateTypeReplacement; //Save the types for use when this is fully instantiated in pass 4 secondPassDoClassInsides(typeDefinition, templateSyntaxTree->getChildren(), newTemplateTypeReplacement); //Use these types when instantiating data members } } else if (possibleMatches.size() == 0) { std::cout << "Could not find type " << edited << ", returning NULL" << std::endl; return NULL; } else { std::cout << "Type: " << edited << " already instantiated with " << typeDefinition << ", will be " << Type(baseType, typeDefinition, indirection, traits).toString() << std::endl; } } Type* toReturn = new Type(baseType, typeDefinition, indirection, traits); std::cout << "Returning type " << toReturn->toString() << std::endl; return toReturn; } NodeTree* ASTTransformation::findOrInstantiateFunctionTemplate(std::vector*> children, NodeTree* scope, std::vector types, std::map templateTypeReplacements) { //First look to see if we can find this already instantiated std::cout << "\n\nFinding or instantiating templated function\n\n" << std::endl; std::string functionName = concatSymbolTree(children[0]); auto unsliced = children[1]->getChildren(); std::vector*> templateParamInstantiationNodes = slice(unsliced, 1 , -2, 2);//skip <, >, and commas std::string instTypeString = ""; std::vector templateActualTypes; for (int i = 0; i < templateParamInstantiationNodes.size(); i++) { Type* instType = typeFromTypeNode(templateParamInstantiationNodes[i],scope, templateTypeReplacements); instTypeString += (instTypeString == "" ? instType->toString() : "," + instType->toString()); templateActualTypes.push_back(instType); } std::cout << "Size: " << templateParamInstantiationNodes.size() << std::endl; std::string fullyInstantiatedName = functionName + "<" + instTypeString + ">"; std::cout << "Looking for " << fullyInstantiatedName << std::endl; std::cout << "Types are : "; for (auto i : types) std::cout << " " << i.toString(); std::cout << std::endl; NodeTree* instantiatedFunction = functionLookup(scope, fullyInstantiatedName, types); //If it already exists, return it if (instantiatedFunction) { std::cout << fullyInstantiatedName << " already exists! Returning" << std::endl; return instantiatedFunction; } else { instantiatedFunction = functionLookup(topScope, fullyInstantiatedName, types); if (instantiatedFunction) { std::cout << fullyInstantiatedName << "already exists! Found in TopScope" << std::endl; return instantiatedFunction; } std::cout << fullyInstantiatedName << " does NOT exist" << std::endl; } //Otherwise, we're going to instantiate it //Find the template definitions NodeTree* templateDefinition = templateFunctionLookup(scope, functionName, templateActualTypes, types); if (templateDefinition == NULL) { std::cout << functionName << " search turned up null, returing null" << std::endl; return NULL; } NodeTree* templateSyntaxTree = templateDefinition->getDataRef()->valueType->templateDefinition; // Makes a map between the names of the template placeholder parameters and the provided types std::map newTemplateTypeReplacement = makeTemplateFunctionTypeMap(templateSyntaxTree->getChildren()[0], templateActualTypes); std::vector*> templateChildren = templateSyntaxTree->getChildren(); for (int i = 0; i < templateChildren.size(); i++) std::cout << ", " << i << " : " << templateChildren[i]->getDataRef()->getName(); std::cout << std::endl; instantiatedFunction = new NodeTree("function", ASTData(function, Symbol(fullyInstantiatedName, true), typeFromTypeNode(templateChildren[1], scope, newTemplateTypeReplacement))); std::set skipChildren; skipChildren.insert(0); skipChildren.insert(1); skipChildren.insert(2); //scope->getDataRef()->scope[fullyInstantiatedName].push_back(instantiatedFunction); instantiatedFunction->getDataRef()->scope["~enclosing_scope"].push_back(templateDefinition->getDataRef()->scope["~enclosing_scope"][0]); //Instantiated Template Function's scope is it's template's definition's scope // Arrrrrgh this has a hard time working because the functions will need to see their parameter once they are emitted as C. // HAHAHAHAHA DOESN'T MATTER ALL ONE C FILE NOW, swap back to old way auto templateTopScope = getUpperTranslationUnit(templateDefinition); templateTopScope->getDataRef()->scope[fullyInstantiatedName].push_back(instantiatedFunction); templateTopScope->addChild(instantiatedFunction); // Add this object the the highest scope's //topScope->getDataRef()->scope[fullyInstantiatedName].push_back(instantiatedFunction); //topScope->addChild(instantiatedFunction); //Add this object the the highest scope's std::cout << "About to do children of " << functionName << " to " << fullyInstantiatedName << std::endl; instantiatedFunction->addChildren(transformChildren(templateSyntaxTree->getChildren(), skipChildren, instantiatedFunction, std::vector(), newTemplateTypeReplacement)); std::cout << "Fully Instantiated function " << functionName << " to " << fullyInstantiatedName << std::endl; return instantiatedFunction; }