use std::rc::Rc; use std::collections::{BTreeSet,BTreeMap}; use std::fmt; use anyhow::{anyhow,bail,Result}; // This first Simple Lisp really is // // No fexprs, no mutation, no continuations, no macros, no strings. // Int/Bool/Nil/Pair/Symbol/Closure/Prim. // // Figuring out GC between a JIT and Rust will be tricky. // Can start with a like tracing-JIT-into-bytecode // let's make our own Box, Rc, maybe Arc, Vec too? // rustonomicon #[derive(Debug, Eq, PartialEq, Ord, PartialOrd, Clone, Copy)] pub struct ID { id: i64 } impl fmt::Display for ID { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}", self.id) } } #[derive(Debug)] pub enum Form { Nil, Int(i32), Bool(bool), Symbol(String), Pair(Rc
, Rc), Closure(Vec, Rc, Rc, ID), Prim(Prim), } #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum Prim { Add, Sub, Mul, Div, Mod, Eq, Cons, Car, Cdr, } impl Prim { fn two_params(self) -> bool { match self { Prim::Car | Prim::Cdr => false, _ => true, } } } fn eval_prim(f: Prim, b: Rc, a: Option>) -> Result> { Ok(match f { Prim::Car => b.car()?, Prim::Cdr => b.cdr()?, _ => { let a = a.unwrap(); match f { Prim::Add => Form::new_int(a.int()? + b.int()?), Prim::Sub => Form::new_int(a.int()? - b.int()?), Prim::Mul => Form::new_int(a.int()? * b.int()?), Prim::Div => Form::new_int(a.int()? / b.int()?), Prim::Mod => Form::new_int(a.int()? % b.int()?), Prim::Cons => Form::new_pair(a, b), Prim::Eq => Form::new_bool(a.my_eq(&b)), _ => unreachable!(), } } }) } impl Form { fn my_eq(&self, o: &Rc) -> bool { match self { Form::Nil => o.is_nil(), Form::Int(i) => if let Ok(oi) = o.int() { *i == oi } else { false }, Form::Bool(b) => if let Ok(ob) = o.bool() { *b == ob } else { false }, Form::Symbol(s) => if let Ok(os) = o.sym() { s == os } else { false }, Form::Pair(a,b) => if let Ok((oa,ob)) = o.pair() { a.my_eq(&oa) && b.my_eq(&ob) } else { false }, Form::Closure(_, _, _, _) => false, Form::Prim(p) => match &**o { Form::Prim(op) => p == op, _ => false }, } } pub fn new_pair(car: Rc, cdr: Rc) -> Rc { Rc::new(Form::Pair(car, cdr)) } pub fn new_nil() -> Rc { Rc::new(Form::Nil) } pub fn new_int(i: i32) -> Rc { Rc::new(Form::Int(i)) } pub fn new_bool(b: bool) -> Rc { Rc::new(Form::Bool(b)) } fn new_closure(params: Vec, env: Rc, body: Rc, ctx: &mut Ctx) -> Rc { Rc::new(Form::Closure(params, env, body, ctx.alloc_id())) } fn truthy(&self) -> bool { match self { Form::Bool(b) => *b, Form::Nil => false, _ => true, } } fn bool(&self) -> Result { match self { Form::Bool(b) => Ok(*b), _ => Err(anyhow!("bool on not a bool")), } } fn int(&self) -> Result { match self { Form::Int(i) => Ok(*i), _ => Err(anyhow!("int on not a int")), } } fn prim(&self) -> Result { match self { Form::Prim(p) => Ok(*p), _ => Err(anyhow!("prim on not a prim")), } } fn sym(&self) -> Result<&str> { match self { Form::Symbol(s) => Ok(s), _ => Err(anyhow!("sym on not a sym")), } } fn pair(&self) -> Result<(Rc,Rc)> { match self { Form::Pair(car, cdr) => Ok((Rc::clone(car),Rc::clone(cdr))), _ => Err(anyhow!("pair on not a pair {self}")), } } fn car(&self) -> Result> { match self { Form::Pair(car, _cdr) => Ok(Rc::clone(car)), _ => Err(anyhow!("car on not a pair")), } } fn cdr(&self) -> Result> { match self { Form::Pair(_car, cdr) => Ok(Rc::clone(cdr)), _ => Err(anyhow!("cdr on not a pair")), } } fn is_nil(&self) -> bool { match self { Form::Nil => true, _ => false, } } pub fn append(&self, x: Rc) -> Result> { match self { Form::Pair(car, cdr) => cdr.append(x).map(|x| Rc::new(Form::Pair(Rc::clone(car), x))), Form::Nil => Ok(Rc::new(Form::Pair(x, Rc::new(Form::Nil)))), _ => Err(anyhow!("append to not a pair")), } } pub fn root_env() -> Rc { let mut e = Form::new_nil(); for (s, v) in [ ("+", Rc::new(Form::Prim(Prim::Add))), ("-", Rc::new(Form::Prim(Prim::Sub))), ("*", Rc::new(Form::Prim(Prim::Mul))), ("/", Rc::new(Form::Prim(Prim::Div))), ("%", Rc::new(Form::Prim(Prim::Mod))), ("cons", Rc::new(Form::Prim(Prim::Cons))), ("cdr", Rc::new(Form::Prim(Prim::Cdr))), ("car", Rc::new(Form::Prim(Prim::Car))), ("=", Rc::new(Form::Prim(Prim::Eq))), ("nil", Form::new_nil()), ] { e = e.define(s.to_string(), v); } e } pub fn lookup(self: &Rc, s: &str) -> Result> { let mut e = Rc::clone(self); loop { let (kv, ne) = e.pair()?; let (sp, v) = kv.pair()?; if sp.sym()? == s { return Ok(v); } e = ne; } } pub fn define(self: &Rc, s: String, v: Rc) -> Rc { Form::new_pair(Form::new_pair(Rc::new(Form::Symbol(s)), v), Rc::clone(self)) } } // JIT Decisions // JIT Closure vs JIT Closure-Template // That is, do you treat the closed-over variables as constant // currently we do! if a lookup is not to one of our in-func defined variables, it's a // constant. done in trace_lookup // Or maybe more specifically, which closed over variables do you treat as constant // This will later inform optimistic inlining of primitives, I imagine // Inline or not // Rejoin branches or not // currently we trace into extended basic blocks, in the future stitch those together + const // prop to do more standard traces (after longer warm-up) // // currently we basically just have lazy EBB bytecode construction // which I like! impl fmt::Display for Op { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { Op::Guard { const_value, side_val:_, side_cont:_, side_id, tbk:_ } => write!(f, "Guard{side_id}({const_value})"), Op::Debug => write!(f, "Debug"), Op::Define { sym } => write!(f, "Define({sym})"), Op::Const ( con ) => write!(f, "Const_{con}"), Op::Drop => write!(f, "Drop"), Op::Lookup { sym } => write!(f, "Lookup({sym})"), Op::Call { len, nc:_, nc_id, statik } => write!(f, "Call{nc_id}({len},{statik:?})"), Op::InlinePrim(prim) => write!(f, "{prim:?}"), Op::Tail(len,oid) => write!(f, "Tail({len},{oid:?})"), Op::Return => write!(f, "Return"), } } } impl Op { fn cnst(&self) -> Result> { match self { Op::Const(c) => Ok(Rc::clone(c)), _ => Err(anyhow!("const on not a const")), } } } #[derive(Debug,Clone)] struct TraceBookkeeping { func_id: ID, stack_const: Vec, defined_names: BTreeSet, } #[derive(Debug)] enum Op { Guard { const_value: Rc, side_val: Option>, side_cont: Rc, side_id: ID, tbk: TraceBookkeeping }, Debug, Define { sym: String }, Const ( Rc ), Drop, Lookup { sym: String }, Call { len: usize, statik: Option, nc: Rc, nc_id: ID }, InlinePrim(Prim), Tail(usize,Option), Return, } #[derive(Debug)] struct Trace { id: ID, ops: Vec, tbk: TraceBookkeeping, } impl Trace { fn new(id: ID, func_id: ID) -> Self { Trace { id, ops: vec![], tbk: TraceBookkeeping { stack_const: vec![], defined_names: BTreeSet::new(), func_id } } } fn follow_on(id: ID, tbk: TraceBookkeeping) -> Self { Trace { id, ops: vec![], tbk } } } impl fmt::Display for Trace { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "Trace for {} (func {}) [", self.id, self.tbk.func_id)?; for op in &self.ops { write!(f, " {}", op)?; } write!(f, " ]")?; if !self.tbk.stack_const.is_empty() { write!(f, "[")?; for s in &self.tbk.stack_const { write!(f, " {}", s)?; } write!(f, " ]")?; } Ok(()) } } #[derive(Debug)] struct Ctx { id_counter: i64, cont_count: BTreeMap, tracing: Option, traces: BTreeMap, trace_resume_data: BTreeMap, } impl fmt::Display for Ctx { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "Ctx") } } impl Ctx { fn new() -> Ctx { Ctx { id_counter: 0, cont_count: BTreeMap::new(), tracing: None, traces: BTreeMap::new(), trace_resume_data: BTreeMap::new(), } } fn alloc_id(&mut self) -> ID { self.id_counter += 1; ID { id: self.id_counter } } fn trace_running(&self) -> bool { self.tracing.is_some() } // Though I guess that means call start should recieve the parameters // also, for like variables, it should guard on what function // if dynamic, interacts with the constant tracking // 8 options // - not tracing, closure - do stats // - not tracing, prim - do nothing // - tracing, Static Prim - inline prim // - tracing, Static non-self - inline call? (currently static call) // - tracing, Static, tail-self - emit tail (static) (we removed loop because it's a static jump back to the head trace regardless) // - tracing, Static,nontail-self- emit call (static) // - tracing, Dynamic, tail - emit tail // - tracing, Dynamic, non-tail - emit call fn trace_call(&mut self, call_len: usize, tmp_stack: &Vec>, nc: &Rc) -> Option { // Needs to take and use parameters for mid-trace // needs to guard on function called if non-constant println!("trace_call call_len={call_len},trace={:?}, tmp_stack {tmp_stack:?}", self.tracing); if let Some(trace) = &mut self.tracing { let statik = if trace.tbk.stack_const[trace.tbk.stack_const.len()-call_len] { // const - TODO: for now, we don't inline but we will want to later (based on what // metrics? can we run them simultaniously, heirarchially? with our new approach on // prims maybe (heck we may need to go farther, and remove the InlinePrim!) match &*tmp_stack[tmp_stack.len()-call_len] { Form::Prim(p) => { if (&trace.tbk.stack_const[trace.tbk.stack_const.len()-call_len..]).iter().all(|x| *x) { trace.tbk.stack_const.truncate(trace.tbk.stack_const.len()-call_len); let b = trace.ops[trace.ops.len()-1].cnst().unwrap(); let (a,f) = if call_len == 3 { (Some(trace.ops[trace.ops.len()-2].cnst().unwrap()), p) } else { (None, p) }; for _ in 0..call_len { trace.ops.push(Op::Drop); } trace.ops.push(Op::Const(eval_prim(*f, b, a).unwrap())); trace.tbk.stack_const.push(true); } else { trace.tbk.stack_const.truncate(trace.tbk.stack_const.len()-call_len); trace.ops.push(Op::InlinePrim(*p)); trace.tbk.stack_const.push(false); } return None; }, Form::Closure(_ps, _e, _b, id) => { if nc.is_ret() { if *id == trace.tbk.func_id { // we removed the loop opcode because this trace needs to know the // func header trace id anyway trace.ops.push(Op::Tail(call_len, Some(*id))); } else { // should be inline trace.ops.push(Op::Tail(call_len, Some(*id))); } println!("Ending trace at loop/tail recursive call!"); println!("\t{}", trace); self.traces.insert(trace.id, self.tracing.take().unwrap()); return None; } // fall through to be a static call, though also would normally be inline Some(*id) }, b => panic!("bad func {b:?}"), } } else { None }; // (normally not const) or has tmps - Call or TailCall if nc.is_ret() { trace.ops.push(Op::Tail(call_len,statik)); println!("Ending trace at tail recursive call!"); println!("\t{}", trace); self.traces.insert(trace.id, self.tracing.take().unwrap()); return None; } else { trace.tbk.stack_const.truncate(trace.tbk.stack_const.len()-call_len); self.id_counter += 1; let nc_id = ID { id: self.id_counter }; // HACK - I can't use the method cuz trace is borrowed trace.ops.push(Op::Call { len: call_len, statik, nc: Rc::clone(nc), nc_id }); println!("Ending trace at call!"); println!("\t{}", trace); self.trace_resume_data.insert(nc_id, trace.tbk.clone()); self.traces.insert(trace.id, self.tracing.take().unwrap()); return Some(nc_id); } } None } fn trace_frame(&mut self, syms: &Vec, id: ID) { let inline = self.tracing.is_some(); let entry = self.cont_count.entry(id).or_insert(0); println!("tracing call start for {id}, has been called {} times so far", *entry); *entry += 1; if *entry > 1 && self.tracing.is_none() && self.traces.get(&id).is_none() { self.tracing = Some(Trace::new(id, id)); } for s in syms.iter().rev() { self.trace_define(s, inline); } self.trace_drop(inline); } fn trace_call_end(&mut self, id: ID, follow_on_trace_data: Option) { println!("tracing call end for {id} followon {follow_on_trace_data:?}"); if let Some(trace) = &mut self.tracing { if trace.tbk.func_id == id { trace.ops.push(Op::Return); println!("Ending trace at end of call!"); println!("\t{}", trace); self.traces.insert(trace.id, self.tracing.take().unwrap()); } } if self.tracing.is_none() { self.try_resume_trace(follow_on_trace_data); } } fn try_resume_trace(&mut self, follow_on_trace_data: Option) { if let Some(follow_id) = follow_on_trace_data { println!("looking follow-on trace {follow_id} in {:?}", self.trace_resume_data); if let Some(follow_tbk) = self.trace_resume_data.remove(&follow_id) { println!("starting follow-on trace {follow_id}, {follow_tbk:?}"); let mut trace = Trace::follow_on(follow_id,follow_tbk); trace.tbk.stack_const.push(false); // fix with actual, if this ends up being a // static call with static param list that isn't // inlined for whatever reason... self.tracing = Some(trace); } } } fn trace_guard + std::fmt::Debug>(&mut self, value: T, other: impl Fn()->(Option>,Rc)) { println!("Tracing guard {value:?}"); if let Some(trace) = &mut self.tracing { let (side_val, side_cont) = other(); self.id_counter += 1; let side_id = ID { id: self.id_counter }; // HACK - I can't use the method cuz trace is borrowed trace.ops.push(Op::Guard { const_value: Rc::new(value.into()), side_val, side_cont, side_id, tbk: trace.tbk.clone() }); } } fn trace_debug(&mut self) { if let Some(trace) = &mut self.tracing { trace.ops.push(Op::Debug); } } fn trace_define(&mut self, sym: &str, pop: bool) { if let Some(trace) = &mut self.tracing { trace.ops.push(Op::Define { sym: sym.to_owned() }); trace.tbk.defined_names.insert(sym.to_owned()); if pop { trace.tbk.stack_const.pop().unwrap(); } } } fn trace_lookup(&mut self, s: &str, f: &Rc) { if let Some(trace) = &mut self.tracing { // constant depends on which env, and I think this is the only spot that cares for // closure jit vs lambda jit if trace.tbk.defined_names.contains(s) { trace.ops.push(Op::Lookup { sym: s.to_owned() }); trace.tbk.stack_const.push(false); } else { trace.ops.push(Op::Const(Rc::clone(f))); trace.tbk.stack_const.push(true); } } } fn trace_drop(&mut self, pop: bool) { if let Some(trace) = &mut self.tracing { trace.ops.push(Op::Drop); if pop { trace.tbk.stack_const.pop().unwrap(); } } } fn trace_constant(&mut self, c: &Rc) { if let Some(trace) = &mut self.tracing { trace.ops.push(Op::Const(Rc::clone(c))); trace.tbk.stack_const.push(true); } } fn trace_lambda(&mut self, _params: &[String], _e: &Rc, _body: &Rc) { if let Some(_trace) = &mut self.tracing { // TODO // kinda both also unimplemented!("trace lambda"); } } // returns f, e, c for interp fn execute_trace_if_exists(&mut self, id: ID, e: &Rc, tmp_stack: &mut Vec>, ret_stack: &mut Vec<(Rc, Rc, Option)>) -> Result, Rc, Cont)>> { if self.trace_running() { println!("Not playing back trace because recording trace"); return Ok(None); // can't trace while running a trace for now (we don't inline now anyway), // in the future it should just tack on the opcodes while jugging the proper // bookkeeping stacks } if let Some(mut trace) = self.traces.get(&id) { println!("Starting trace playback"); let mut e = Rc::clone(e); loop { println!("Running trace {trace}, \n\ttmp_stack:{tmp_stack:?}"); for b in trace.ops.iter() { match b { Op::Guard { const_value, side_val, side_cont, side_id, tbk } => { println!("Guard(op) {const_value}"); if !const_value.my_eq(tmp_stack.last().unwrap()) { if let Some(new_trace) = self.traces.get(side_id) { if side_val.is_some() { tmp_stack.pop().unwrap(); } println!("\tchaining trace to side trace"); trace = new_trace; break; // break out of this trace and let infinate loop spin } else { println!("\tending playback b/c failed guard"); assert!(self.tracing.is_none()); let mut ntrace = Trace::follow_on(*side_id,tbk.clone()); if let Some(side_val) = side_val { *tmp_stack.last_mut().unwrap() = Rc::clone(side_val); *ntrace.tbk.stack_const.last_mut().unwrap() = false; // this might be able to be // more precise, actually } self.tracing = Some(ntrace); return Ok(Some((tmp_stack.pop().unwrap(), e, (**side_cont).clone()))); } } } Op::Debug => { println!("Debug(op) {}", tmp_stack.last().unwrap()); } Op::Define { sym } => { let v = tmp_stack.pop().unwrap(); println!("Define(op) {sym} = {}", v); e = e.define(sym.clone(), v); } Op::Const ( con ) => { println!("Const(op) {con}"); tmp_stack.push(Rc::clone(con)); } Op::Drop => { println!("Drop(op) {}", tmp_stack.last().unwrap()); tmp_stack.pop().unwrap(); } Op::Lookup { sym } => { println!("Lookup(op) {sym}"); tmp_stack.push(e.lookup(sym)?); } Op::InlinePrim(prim) => { println!("InlinePrim(op) {prim:?}"); let b = tmp_stack.pop().unwrap(); let a = if prim.two_params() { Some(tmp_stack.pop().unwrap()) } else { None }; tmp_stack.pop().unwrap(); // pop the prim tmp_stack.push(eval_prim(*prim, b, a)?); } Op::Call { len, nc, nc_id, statik } => { println!("Call(op)"); if let Some(static_call_id) = statik { if let Some(new_trace) = self.traces.get(static_call_id) { ret_stack.push((Rc::clone(&e), (*nc).clone(), Some(*nc_id))); println!("\tchaining to call trace b/c Call with statik"); trace = new_trace; break; // break out of this trace and let infinate loop spin } } match &*Rc::clone(&tmp_stack[tmp_stack.len()-*len]) { Form::Closure(ps, ie, b, call_id) => { if ps.len() != *len-1 { bail!("arguments length doesn't match"); } ret_stack.push((Rc::clone(&e), (*nc).clone(), Some(*nc_id))); if let Some(new_trace) = self.traces.get(call_id) { println!("\tchaining to call trace b/c Call with dyamic but traced"); e = Rc::clone(ie); trace = new_trace; break; // break out of this trace and let infinate loop spin } else { return Ok(Some((Rc::clone(&b), Rc::clone(ie), Cont::Frame { syms: ps.clone(), id: *call_id, c: Rc::new(Cont::Eval { c: Rc::new(Cont::Ret { id: *call_id }) }) }))); } }, Form::Prim(p) => { let b = tmp_stack.pop().unwrap(); let a = if *len == 2 { None } else { assert!(*len == 3); Some(tmp_stack.pop().unwrap()) }; let result = eval_prim(*p, b, a)?; if let Some(new_trace) = self.traces.get(nc_id) { *tmp_stack.last_mut().unwrap() = result; // for the prim itself println!("\tchaining to ret trace b/c Call with dyamic but primitive and next traced"); trace = new_trace; break; // break out of this trace and let infinate loop spin } else { println!("\tstopping playback to ret b/c Call with dyamic but primitive and next not-traced"); tmp_stack.pop().unwrap(); // for the prim itself return Ok(Some((result, e, (**nc).clone()))); } }, ncomb => { println!("Current stack is {tmp_stack:?}"); bail!("tried to call a non-comb {ncomb}") }, } } Op::Tail(_len,_oid) => { println!("Tail(op)"); // Huh, this actually has to know how many envs we pushed on so we can pop // them off unimplemented!(); } Op::Return => { println!("Return(op)"); let (e, nc, resume_data) = ret_stack.pop().unwrap(); if let Some(resume_id) = resume_data { if let Some(new_trace) = self.traces.get(&resume_id) { println!("\tchaining to return trace b/c Return {resume_id} - {new_trace:?}"); trace = new_trace; break; // break out of this trace and let infinate loop spin } } println!("\tending playback b/c Return, attempting to resume trace"); self.try_resume_trace(resume_data); return Ok(Some((tmp_stack.pop().unwrap(), e, (*nc).clone()))); } } } } } else { Ok(None) } } } #[derive(Clone,Debug)] enum Cont { MetaRet, Ret { id: ID, }, Eval { c: Rc }, Prim { s: &'static str, to_go: Rc, c: Rc }, Call { n: usize, to_go: Rc, c: Rc }, Frame { syms: Vec, id: ID, c: Rc }, } impl Cont { fn is_ret(&self) -> bool { match self { Cont::Ret { id: _ } => true, _ => false, } } } pub fn eval(f: Rc) -> Result> { let mut ctx = Ctx::new(); let mut f = f; let mut e = Form::root_env(); let mut c = Cont::Eval { c: Rc::new(Cont::MetaRet) }; let mut ret_stack: Vec<(Rc, Rc, Option)> = vec![]; let mut tmp_stack: Vec> = vec![]; loop { match c { Cont::MetaRet => { println!("Ctx was {ctx}"); assert!(!ctx.trace_running()); return Ok(f); } Cont::Prim { s, to_go, c: nc } => { match s { "if" => { let thn = to_go.car()?; let els = to_go.cdr()?.car()?; if f.truthy() { ctx.trace_guard(true, || (Some(Rc::clone(&els)), Rc::new(Cont::Eval { c: Rc::clone(&nc) }))); ctx.trace_drop(true); f = thn; } else { ctx.trace_guard(false, ||(Some(Rc::clone(&thn)), Rc::new(Cont::Eval { c: Rc::clone(&nc) }))); ctx.trace_drop(true); f = els; } c = Cont::Eval { c: nc }; }, "or" => { let other = to_go.car()?; if !f.truthy() { ctx.trace_guard(false, || (None, nc.clone())); ctx.trace_drop(true); f = other; c = Cont::Eval { c: nc }; } else { ctx.trace_guard(true, || (Some(Rc::clone(&other)), Rc::new(Cont::Eval { c: Rc::clone(&nc) }))); c = (*nc).clone(); } }, "and" => { let other = to_go.car()?; if f.truthy() { ctx.trace_guard(true, || (None, nc.clone())); ctx.trace_drop(true); f = other; c = Cont::Eval { c: nc }; } else { ctx.trace_guard(false, || (Some(Rc::clone(&other)), Rc::new(Cont::Eval { c: Rc::clone(&nc) }))); c = (*nc).clone(); } }, "begin" => { if to_go.is_nil() { c = (*nc).clone(); } else { ctx.trace_drop(true); f = to_go.car()?; c = Cont::Eval { c: Rc::new(Cont::Prim { s: "begin", to_go: to_go.cdr()?, c: nc }) }; } }, "debug" => { println!("Debug: {f}"); ctx.trace_debug(); c = (*nc).clone(); }, "define" => { let sym = to_go.sym()?.to_string(); ctx.trace_define(&sym, true); e = e.define(sym, Rc::clone(&f)); c = (*nc).clone(); }, _ => { panic!("bad prim {s}"); } } }, Cont::Ret { id, } => { let (ne, nc, resume_data) = ret_stack.pop().unwrap(); ctx.trace_call_end(id, resume_data); e = ne; if let Some(nc_id) = resume_data { tmp_stack.push(f); // ugly dance pt 1 if let Some((fp, ep, cp)) = ctx.execute_trace_if_exists(nc_id, &e, &mut tmp_stack, &mut ret_stack)? { f = fp; e = ep; c = cp; println!("After executing return trace, f={f}, tmp_stack is {tmp_stack:?}"); continue; } else { f = tmp_stack.pop().unwrap(); //ugly dance pt2 } } c = (*nc).clone(); }, Cont::Call { n, to_go, c: nc } => { tmp_stack.push(f); if to_go.is_nil() { let resume_data = ctx.trace_call(n, &mut tmp_stack, &nc); match &*Rc::clone(&tmp_stack[tmp_stack.len()-n]) { Form::Closure(ps, ie, b, id) => { if ps.len() != n-1 { bail!("arguments length doesn't match"); } ret_stack.push((Rc::clone(&e), nc, resume_data)); if let Some((fp, ep, cp)) = ctx.execute_trace_if_exists(*id, ie, &mut tmp_stack, &mut ret_stack)? { f = fp; e = ep; c = cp; println!("After executing trace, f={f}, tmp_stack is {tmp_stack:?}"); } else { println!("replacing {e} with {ie}"); e = Rc::clone(ie); c = Cont::Frame { syms: ps.clone(), id: *id, c: Rc::new(Cont::Eval { c: Rc::new(Cont::Ret { id: *id }) }) }; f = Rc::clone(&b); } }, Form::Prim(p) => { let b = tmp_stack.pop().unwrap(); let a = if n == 2 { None } else { assert!(n == 3); Some(tmp_stack.pop().unwrap()) }; f = eval_prim(*p, b, a)?; tmp_stack.pop().unwrap(); // for the prim itself c = (*nc).clone(); }, ncomb => { println!("Current stack is {tmp_stack:?}"); bail!("tried to call a non-comb {ncomb}") }, } } else { f = to_go.car()?; c = Cont::Eval { c: Rc::new(Cont::Call { n: n+1, to_go: to_go.cdr()?, c: nc }) }; } } Cont::Frame { syms, id, c: nc } => { ctx.trace_frame(&syms, id); for s in syms.into_iter().rev() { e = e.define(s, tmp_stack.pop().unwrap()); } tmp_stack.pop().unwrap(); // for the func value c = (*nc).clone(); } Cont::Eval { c: nc } => { let tmp = f; match &*tmp { Form::Symbol(s) => { f = e.lookup(s)?; ctx.trace_lookup(s, &f); c = (*nc).clone(); }, Form::Pair(car, cdr) => { match &**car { Form::Symbol(s) if s == "if" => { f = cdr.car()?; c = Cont::Eval { c: Rc::new(Cont::Prim { s: "if", to_go: cdr.cdr()?, c: nc }) }; } // and/or has to short-circut, so special form // just like Scheme (bad ;) ) Form::Symbol(s) if s == "or" => { f = cdr.car()?; c = Cont::Eval { c: Rc::new(Cont::Prim { s: "or", to_go: cdr.cdr()?, c: nc }) }; } Form::Symbol(s) if s == "and" => { f = cdr.car()?; c = Cont::Eval { c: Rc::new(Cont::Prim { s: "and", to_go: cdr.cdr()?, c: nc }) }; } Form::Symbol(s) if s == "begin" => { f = cdr.car()?; c = Cont::Eval { c: Rc::new(Cont::Prim { s: "begin", to_go: cdr.cdr()?, c: nc }) }; } Form::Symbol(s) if s == "debug" => { f = cdr.car()?; c = Cont::Eval { c: Rc::new(Cont::Prim { s: "debug", to_go: cdr.cdr()?, c: nc }) }; } Form::Symbol(s) if s == "define" => { // note the swap, evaluating the second not the first (define a value..) f = cdr.cdr()?.car()?; c = Cont::Eval { c: Rc::new(Cont::Prim { s: "define", to_go: cdr.car()?, c: nc }) }; } Form::Symbol(s) if s == "quote" => { f = cdr.car()?; ctx.trace_constant(&f); c = (*nc).clone(); } // (lambda (a b) body) Form::Symbol(s) if s == "lambda" => { let mut params_vec = vec![]; let mut params = cdr.car()?; while let Ok((ncar, ncdr)) = params.pair() { params_vec.push(ncar.sym()?.to_string()); params = ncdr; } let body = cdr.cdr()?.car()?; ctx.trace_lambda(¶ms_vec, &e, &body); f = Form::new_closure(params_vec, Rc::clone(&e), body, &mut ctx); c = (*nc).clone(); } _ => { f = Rc::clone(car); c = Cont::Eval { c: Rc::new(Cont::Call { n: 1, to_go: Rc::clone(cdr), c: nc }) }; } } }, _ => { // value, no eval f = tmp; ctx.trace_constant(&f); c = (*nc).clone(); } } } } } } impl From for Form { fn from(item: String) -> Self { Form::Symbol(item) } } impl From<&str> for Form { fn from(item: &str) -> Self { Form::Symbol(item.to_owned()) } } impl From for Form { fn from(item: i32) -> Self { Form::Int(item) } } impl From for Form { fn from(item: bool) -> Self { Form::Bool(item) } } impl, B: Into> From<(A, B)> for Form { fn from(item: (A, B)) -> Self { Form::Pair(Rc::new(item.0.into()), Rc::new(item.1.into())) } } impl fmt::Display for Form { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { Form::Nil => write!(f, "nil"), Form::Int(i) => write!(f, "{i}"), Form::Bool(b) => write!(f, "{b}"), Form::Symbol(s) => write!(f, "'{s}"), Form::Pair(car, cdr) => { write!(f, "({}", car)?; let mut traverse: Rc = Rc::clone(cdr); loop { match &*traverse { Form::Pair(ref carp, ref cdrp) => { write!(f, " {}", carp)?; traverse = Rc::clone(cdrp); }, Form::Nil => { write!(f, ")")?; return Ok(()); }, x => { write!(f, ". {x})")?; return Ok(()); }, } } }, Form::Closure(params, _inner_env, _code, id) => { write!(f, "", id, params) } Form::Prim(p) => { match p { Prim::Add => write!(f, "+"), Prim::Sub => write!(f, "-"), Prim::Mul => write!(f, "*"), Prim::Div => write!(f, "/"), Prim::Mod => write!(f, "%"), Prim::Cons => write!(f, "cons"), Prim::Car => write!(f, "car"), Prim::Cdr => write!(f, "cdr"), Prim::Eq => write!(f, "="), } } } } }