import grammer:* import symbol:* import lexer:* import tree:* import vector:* import stack:* import map:* import util:* import string:* import mem:* import io:* obj parser (Object) { var input: vector var gram: grammer var gss: gss var to_reduce: stack var to_shift: stack< pair<*tree, int> > var SPPFStepNodes: vector< pair<*tree, int> > var packed_map: map<*tree, bool> fun construct(grammerIn: grammer): *parser { input.construct() gram.copy_construct(&grammerIn) gss.construct() to_reduce.construct() to_shift.construct() SPPFStepNodes.construct() packed_map.construct() return this } fun copy_construct(old: *parser) { input.copy_construct(&old->input) gram.copy_construct(&old->gram) gss.copy_construct(&old->gss) to_reduce.copy_construct(&old->to_reduce) to_shift.copy_construct(&old->to_shift) SPPFStepNodes.copy_construct(&old->SPPFStepNodes) packed_map.copy_construct(&old->packed_map) } fun operator=(old: ref parser) { destruct() copy_construct(&old) } fun destruct() { input.destruct() gram.destruct() gss.destruct() to_reduce.destruct() to_shift.destruct() SPPFStepNodes.destruct() packed_map.destruct() } fun parse_input(inputStr: string, name: string): *tree { input.clear() gss.clear() to_reduce.clear() to_shift.clear() SPPFStepNodes.clear() packed_map.clear() // if the zero state contains any reductions for state 0 and eof, then // it must be reducing to the goal state println("checking the bidness") if (inputStr == "" && gram.parse_table.get(0, eof_symbol()).contains(action(reduce, 0))) { println("Accept on no input for ") println(name) return new>()->construct(null_symbol()) } var lex = lexer(gram.terminals) lex.set_input(inputStr) var current_symbol.construct(): symbol for (current_symbol = lex.next(); current_symbol != eof_symbol() && current_symbol != invalid_symbol(); current_symbol = lex.next();) { /*println("current_symbol is ")*/ /*println(current_symbol.to_string())*/ input.addEnd(current_symbol) } if (current_symbol == invalid_symbol()) { println("lexing failed for ") println(name) return null>() } var v0 = gss.new_node(0) gss.add_to_frontier(0, v0) var null_symbol_tree = null>() /*println("looking up")*/ /*println(input[0].to_string())*/ gram.parse_table.get(0, input[0]).for_each(fun(act: action) { /*println("for each action")*/ if (act.act == push) to_shift.push(make_pair(v0, act.state_or_rule)) else if (act.act == reduce && fully_reduces_to_null(gram.rules[act.state_or_rule])) to_reduce.push(reduction(v0, gram.rules[act.state_or_rule].lhs, 0, null_symbol_tree, null_symbol_tree)) }) for (var i = 0; i < input.size; i++;) { if (gss.frontier_is_empty(i)) { print(i) print(" frontier is empty in file '") print(name) print("' with txt ") print(input[i].to_string()) println() return null>() } SPPFStepNodes.clear() while (to_reduce.size()) reducer(i) shifter(i) } var acc_state = gss.frontier_get_acc_state(input.size-1) if (acc_state) { println("ACCEPTED!") return gss.get_edge(acc_state, v0) } println("REJECTED") println("parsing (not lexing) failed for ") println(name) return null>() } fun reducer(i: int) { println("reducing") var curr_reduction = to_reduce.pop() gss.get_reachable_paths(curr_reduction.from, max(0, curr_reduction.length-1)). for_each(fun(path: ref vector<*tree>) { var path_edges = range(path.size-1).map(fun(indx: int): *tree { return gss.get_edge(path[indx], path[indx+1]);}).reverse() if (curr_reduction.length != 0) path_edges.addEnd(curr_reduction.label) var curr_reached = path.last() var shift_to = gram.parse_table.get_shift(curr_reached->data, curr_reduction.sym).state_or_rule var new_label = null>() if (curr_reduction.length == 0) { new_label = curr_reduction.nullable_parts } else { var reached_frontier = gss.get_containing_frontier(curr_reached) for (var j = 0; j < SPPFStepNodes.size; j++;) { if (SPPFStepNodes[j].second == reached_frontier && SPPFStepNodes[j].first->data == curr_reduction.sym) { new_label = SPPFStepNodes[j].first break } } if (!new_label) { new_label = new>()->construct(curr_reduction.sym) SPPFStepNodes.addEnd(make_pair(new_label, reached_frontier)) } } var shift_to_node = gss.in_frontier(i, shift_to) if (shift_to_node) { if (!gss.has_edge(shift_to_node, curr_reached)) { gss.add_edge(shift_to_node, curr_reached, new_label) // do non-null reductions if (curr_reduction.length) { gram.parse_table.get(shift_to, input[i]).for_each(fun(act: action) { var reduce_rule = gram.rules[act.state_or_rule] if (act.act == reduce && !fully_reduces_to_null(reduce_rule)) to_reduce.push(reduction(curr_reached, reduce_rule.lhs, reduce_rule.position, new>()->construct(null_symbol()), new_label)) }) } } } else { shift_to_node = gss.new_node(shift_to) gss.add_to_frontier(i, shift_to_node) gss.add_edge(shift_to_node, curr_reached, new_label) } }) } fun shifter(i: int) { } fun fully_reduces_to_null(r: ref rule): bool { return r.position == 0 && gram.first_vector(r.rhs).contains(null_symbol()) } } obj gss (Object) { var data: vector>> var edges: map< pair<*tree, *tree>, *tree > fun construct(): *gss { data.construct() edges.construct() } fun copy_construct(old: *gss) { data.copy_construct(&old->data) edges.copy_construct(&old->edges) } fun destruct() { data.destruct() edges.destruct() } fun clear() { data.clear() edges.clear() } fun new_node(state: int): *tree { return new>()->construct(state) } fun add_to_frontier(frontier: int, node: *tree) { while(data.size <= frontier) data.addEnd(vector<*tree>()) data[frontier].addEnd(node) } fun frontier_is_empty(frontier: int): bool { return frontier >= data.size || data[frontier].size == 0 } fun frontier_get_acc_state(frontier: int): *tree { // the accepting state is always state 1, for now return in_frontier(frontier, 1) } fun in_frontier(frontier: int, state: int): *tree { for (var i = 0; i < data[frontier].size; i++;) if (data[frontier][i]->data == state) return data[frontier][i] return null>() } fun get_edge(start: *tree, end: *tree): *tree { return edges[make_pair(start, end)] } fun has_edge(start: *tree, end: *tree): bool { // could also look in map, but this is faster... return start->children.find(end) != -1 } fun add_edge(start: *tree, end: *tree, edge: *tree) { start->children.add(end) edges.set(make_pair(start,end), edge) } fun get_containing_frontier(node: *tree): int { for (var i = 0; i < data.size; i++;) if (data[i].contains(node)) return i return -1 } fun get_reachable_paths(start: *tree, length: int): vector>> { var paths = vector>>() var recursive_path_find: fun(*tree, int, vector<*tree>):void = fun(start: *tree, length: int, current_path: vector<*tree>) { current_path.addEnd(start) if (!length) { paths.addEnd(current_path) return } start->children.for_each(fun(child: *tree) { recursive_path_find(child, length-1, current_path) }) } recursive_path_find(start, length, vector<*tree>()) return paths } } fun reduction(f: *tree, s: symbol, l: int, n: *tree, label:*tree): reduction { var toRet.construct(f,s,l,n,label): reduction return toRet } obj reduction (Object) { var from: *tree var sym: symbol var length: int var nullable_parts: *tree var label: *tree fun construct(f: *tree, s: symbol, l: int, n: *tree, label:*tree): *reduction { from = f sym.copy_construct(&s) length = l nullable_parts = n label = label return this } fun copy_construct(old: *reduction) { from = old->from sym.copy_construct(&old->sym) length = old->length nullable_parts = old->nullable_parts label = old->label } fun operator=(other: reduction):void { destruct() copy_construct(&other) } fun destruct() { sym.destruct() } }