#include "ASTTransformation.h" ASTTransformation::ASTTransformation(Importer *importerIn) { importer = importerIn; topScope = NULL; //Set up language level special scope. (the final scope checked) //Note the NULL type languageLevelScope["+"].push_back( new NodeTree("function", ASTData(function, Symbol("+", true), NULL))); languageLevelScope["-"].push_back(new NodeTree("function", ASTData(function, Symbol("-", true), NULL))); languageLevelScope["*"].push_back(new NodeTree("function", ASTData(function, Symbol("*", true), NULL))); languageLevelScope["/"].push_back(new NodeTree("function", ASTData(function, Symbol("/", true), NULL))); languageLevelScope["%"].push_back(new NodeTree("function", ASTData(function, Symbol("%", true), NULL))); languageLevelScope["&"].push_back(new NodeTree("function", ASTData(function, Symbol("&", true), NULL))); languageLevelScope["--"].push_back(new NodeTree("function", ASTData(function, Symbol("--", true), NULL))); languageLevelScope["++"].push_back(new NodeTree("function", ASTData(function, Symbol("++", true), NULL))); languageLevelScope["=="].push_back(new NodeTree("function", ASTData(function, Symbol("==", true), NULL))); languageLevelScope["<="].push_back(new NodeTree("function", ASTData(function, Symbol("<=", true), NULL))); languageLevelScope[">="].push_back(new NodeTree("function", ASTData(function, Symbol(">=", true), NULL))); languageLevelScope["<"].push_back(new NodeTree("function", ASTData(function, Symbol("<", true), NULL))); languageLevelScope[">"].push_back(new NodeTree("function", ASTData(function, Symbol(">", true), NULL))); languageLevelScope["&&"].push_back(new NodeTree("function", ASTData(function, Symbol("&&", true), NULL))); languageLevelScope["||"].push_back(new NodeTree("function", ASTData(function, Symbol("||", true), NULL))); languageLevelScope["!"].push_back(new NodeTree("function", ASTData(function, Symbol("!", true), NULL))); languageLevelScope["*="].push_back(new NodeTree("function", ASTData(function, Symbol("*=", true), NULL))); languageLevelScope["+="].push_back(new NodeTree("function", ASTData(function, Symbol("+=", true), NULL))); languageLevelScope["-="].push_back(new NodeTree("function", ASTData(function, Symbol("-=", true), NULL))); languageLevelScope["."].push_back(new NodeTree("function", ASTData(function, Symbol(".", true), NULL))); languageLevelScope["->"].push_back(new NodeTree("function", ASTData(function, Symbol("->", true), NULL))); languageLevelScope["[]"].push_back(new NodeTree("function", ASTData(function, Symbol("[]", true), NULL))); } ASTTransformation::~ASTTransformation() { // } //First pass defines all type_defs (objects and ailises) NodeTree* ASTTransformation::firstPass(std::string fileName, NodeTree* parseTree) { NodeTree* translationUnit = new NodeTree("translation_unit", ASTData(translation_unit)); std::vector*> children = parseTree->getChildren(); importer->registerAST(fileName, translationUnit, parseTree); //Register ourselves with the importer. //This puts us in the scope and the list of ASTs that go through all the passes //Go through and define all types (type_defs wether they are classes or ailises) //We fully create template types here because class templates can be instantiated in the next (second) pass for (NodeTree* i : children) { if (i->getDataRef()->getName() == "type_def") { std::string name; if (i->getChildren()[0]->getData().getName() == "template_dec") // It's a template name = concatSymbolTree(i->getChildren()[1]); else //It's not name = concatSymbolTree(i->getChildren()[0]); NodeTree* firstDec = new NodeTree("type_def", ASTData(type_def, Symbol(name, true, name))); //If this is a template, go ahead and set it up. Pass 2 needs templates set up so it can (partially) instantiate them. if (i->getChildren()[0]->getData().getName() == "template_dec") firstDec->getDataRef()->valueType = new Type(template_type, i); //So we give this typedef its name without any template types and make its type template_type, and point to this from node. //Then, when this template is instantiated, it will run transform on from with the types filled in. translationUnit->addChild(firstDec); translationUnit->getDataRef()->scope[name].push_back(firstDec); firstDec->getDataRef()->scope["~enclosing_scope"].push_back(translationUnit); } } //Now go through and do all imports //We do this second so that if an import also imports us, all of our stuff has already been defined for (NodeTree* i : children) { if (i->getDataRef()->getName() == "import") { std::string toImport = concatSymbolTree(i->getChildren()[0]); translationUnit->addChild(new NodeTree("import", ASTData(import, Symbol(toImport, true)))); //Do the imported file too NodeTree* outsideTranslationUnit = importer->importFirstPass(toImport + ".krak"); translationUnit->getDataRef()->scope[toImport].push_back(outsideTranslationUnit); //Put this transation_unit in the scope as it's files name //Now add it to scope for (auto i = outsideTranslationUnit->getDataRef()->scope.begin(); i != outsideTranslationUnit->getDataRef()->scope.end(); i++) for (auto j : i->second) translationUnit->getDataRef()->scope[i->first].push_back(j); } } return translationUnit; } //Second pass defines data inside objects, outside declaration statements, and function prototypes (since we have type_defs now) void ASTTransformation::secondPass(NodeTree* ast, NodeTree* parseTree) { topScope = ast; //Top scope is maintained for templates, which need to add themselves to the top scope from where ever they are instantiated std::vector*> children = parseTree->getChildren(); //Go through and declare data internal to objects as well as all function prototypes (methods and otherwise) //Note that this pass can instantiate class templates for (NodeTree* i : children) { if (i->getDataRef()->getName() == "type_def") { if (i->getChildren()[0]->getData().getName() == "template_dec") // It's a template continue; //We've already set upt the class templates std::vector*> typedefChildren = i->getChildren(); std::string name = concatSymbolTree(typedefChildren[0]); NodeTree* typeDef = ast->getDataRef()->scope[name][0]; //No overloaded types //It's an alias if (typedefChildren[1]->getData().getName() == "type") { /*HERE*/ typeDef->getDataRef()->valueType = typeFromTypeNode(typedefChildren[1], ast, std::map()); //No templates, we're in the traslation unit continue; } //Do the inside of classes here typeDef->getDataRef()->valueType = new Type(typeDef); for (NodeTree* j : typedefChildren) { if (j->getDataRef()->getName() == "declaration_statement") { //do declaration typeDef->addChild(secondPassDeclaration(j, typeDef, std::map())); } else if (j->getDataRef()->getName() == "function") { //do member method typeDef->addChild(secondPassFunction(j, typeDef, std::map())); } } } else if (i->getDataRef()->getName() == "function") { //Do prototypes of functions ast->addChild(secondPassFunction(i, ast, std::map())); } else if (i->getDataRef()->getName() == "declaration_statement") { //Do declaration statements ast->addChild(secondPassDeclaration(i, ast, std::map())); } } } //This function may need to partially instantiate a class template NodeTree* ASTTransformation::secondPassDeclaration(NodeTree* from, NodeTree* scope, std::map templateTypeReplacements) { NodeTree* decStmt = new NodeTree("declaration_statement", ASTData(declaration_statement)); std::string newIdentifierStr = concatSymbolTree(from->getChildren()[1]); /*HERE*/Type* identifierType = typeFromTypeNode(from->getChildren()[0], scope, templateTypeReplacements); std::cout << "Declaring an identifier " << newIdentifierStr << " to be of type " << identifierType->toString() << std::endl; NodeTree* newIdentifier = new NodeTree("identifier", ASTData(identifier, Symbol(newIdentifierStr, true), identifierType)); scope->getDataRef()->scope[newIdentifierStr].push_back(newIdentifier); decStmt->getDataRef()->scope["~enclosing_scope"].push_back(scope); decStmt->addChild(newIdentifier); return decStmt; } //This function may need to partially instantiate a class template NodeTree* ASTTransformation::secondPassFunction(NodeTree* from, NodeTree* scope, std::map templateTypeReplacements) { //If this is a function template std::vector*> children = from->getChildren(); NodeTree* functionDef = NULL; std::string functionName; if (children[0]->getData().getName() == "template_dec") { functionName = concatSymbolTree(children[2]); functionDef = new NodeTree("function", ASTData(function, Symbol(functionName, true), new Type(template_type, from))); scope->getDataRef()->scope[functionName].push_back(functionDef); functionDef->getDataRef()->scope["~enclosing_scope"].push_back(scope); std::map yetToBeInstantiatedTemplateTypes; //So that template types (like T) that have not been placed yet are found and given //a special Type() - baseType = template_type_type yetToBeInstantiatedTemplateTypes[concatSymbolTree(children[0]->getChildren()[1])] = new Type(template_type_type); //This may have to be combined with templateTypeReplacements if we do templated member functions inside of templated classes /*HERE*/auto transChildren = transformChildren(slice(children,3,-2), std::set(), functionDef, std::vector(), yetToBeInstantiatedTemplateTypes); std::cout << "Template function " << functionName << " has these parameters: "; for (auto i : transChildren) std::cout << "||" << i->getDataRef()->toString() << "|| "; std::cout << "DoneList" << std::endl; functionDef->addChildren(transChildren); std::cout << "Finished Non-Instantiated Template function " << functionName << std::endl; return functionDef; } functionName = concatSymbolTree(children[1]); /*HERE*/functionDef = new NodeTree("function", ASTData(function, Symbol(functionName, true), typeFromTypeNode(children[0], scope, templateTypeReplacements))); scope->getDataRef()->scope[functionName].push_back(functionDef); functionDef->getDataRef()->scope["~enclosing_scope"].push_back(scope); //We only do the parameter nodes. We don't do the body yet, as this is the secondPass /*HERE*/auto transChildren = transformChildren(slice(children,2,-2), std::set(), functionDef, std::vector(), templateTypeReplacements); // std::cout << "REGULAR function " << functionName << " has " << transChildren.size() << " parameters: "; // for (auto i : transChildren) // std::cout << "||" << i->getDataRef()->toString() << "|| "; // std::cout << "DoneList" << std::endl; functionDef->addChildren(transChildren); return functionDef; } //Third pass redoes all imports to import the new function prototypes and identifiers void ASTTransformation::thirdPass(NodeTree* ast) { std::vector*> children = ast->getChildren(); //Go through and do all imports again for (NodeTree* i : children) { if (i->getDataRef()->type == import) { std::string toImport = i->getDataRef()->symbol.getName(); NodeTree* outsideTranslationUnit = importer->getUnit(toImport + ".krak"); //Now add all functions to scope std::cout << "Trying to re-import from " << toImport << std::endl; for (auto i = outsideTranslationUnit->getDataRef()->scope.begin(); i != outsideTranslationUnit->getDataRef()->scope.end(); i++) { std::cout << "Looking through " << i->first << std::endl; for (auto j : i->second) if (j->getDataRef()->type == function || j->getDataRef()->type == identifier) std::cout << "Copying " << i->first << std::endl, ast->getDataRef()->scope[i->first].push_back(j); else std::cout << "Not Copying " << i->first << std::endl; } } } } //The fourth pass finishes up by doing all function bodies void ASTTransformation::fourthPass(NodeTree* ast, NodeTree* parseTree) { topScope = ast; //Top scope is maintained for templates, which need to add themselves to the top scope from where ever they are instantiated std::vector*> children = parseTree->getChildren(); //Go through and finish both regular functions and class methods //Note that this pass can instantiate class AND function templates for (NodeTree* i : children) { if (i->getDataRef()->getName() == "type_def") { if (i->getChildren()[0]->getData().getName() == "template_dec") // It's a template continue; //We've already set up the class templates std::vector*> typedefChildren = i->getChildren(); std::string name = concatSymbolTree(typedefChildren[0]); NodeTree* typeDef = ast->getDataRef()->scope[name][0]; //No overloaded types //It's an alias if (typedefChildren[1]->getData().getName() == "type") continue; //We're done with aliases too //Do the inside of classes here for (NodeTree* j : typedefChildren) { if (j->getDataRef()->getName() == "function") { fourthPassFunction(j, seachScopeForFunctionDef(typeDef, j, std::map()), std::map()); //do member method } } } else if (i->getDataRef()->getName() == "function") { //Do prototypes of functions if (i->getChildren()[0]->getData().getName() == "template_dec") continue; //We've already set up function templates fourthPassFunction(i, seachScopeForFunctionDef(ast, i, std::map()), std::map()); } } } //This function finds the right AST definition in a scope given its parseTree NodeTree* ASTTransformation::seachScopeForFunctionDef(NodeTree* scope, NodeTree* parseTree, std::map templateTypeReplacements) { std::string functionName = concatSymbolTree(parseTree->getChildren()[1]); std::vector types; std::vector*> children = parseTree->getChildren(); //Skipping the initial return type and identifier as well as the final code block std::cout << "\n Searching scope for function def, function is :" << concatSymbolTree(children[1]) << ", children size is " << children.size() << std::endl; for (int i = 2; i < children.size()-1; i+=2) { //Skip over commas std::cout << "Making type for lookup ||" << concatSymbolTree(children[i]) << "||" << std::endl; Type type = *typeFromTypeNode(children[i]->getChildren()[0], scope, templateTypeReplacements); std::cout << "Type made: " << type.toString() << std::endl; types.push_back(type); } std::cout << "About to seach scope about " << concatSymbolTree(children[1]) << std::endl; NodeTree* result = scopeLookup(scope, functionName, types); std::cout << "Done searching scope about " << concatSymbolTree(children[1]) << std::endl; return result; } //This function does the function bodies given its start (the prototype) //It is used in the fourth pass to finish things up //Note that it may instantiate class OR function templates, which need to be fully instantiated void ASTTransformation::fourthPassFunction(NodeTree* from, NodeTree* functionDef, std::map templateTypeReplacements) { NodeTree* codeBlock = from->getChildren()[from->getChildren().size()-1]; functionDef->addChild(transform(codeBlock, functionDef, std::vector(), templateTypeReplacements)); } NodeTree* ASTTransformation::transform(NodeTree* from) { //Set up top scope return transform(from, NULL, std::vector(), std::map()); } NodeTree* ASTTransformation::transform(NodeTree* from, NodeTree* scope, std::vector types, std::map templateTypeReplacements) { Symbol current = from->getData(); std::string name = current.getName(); NodeTree* newNode = NULL; std::vector*> children = from->getChildren(); std::set skipChildren; /* if (name == "translation_unit") { newNode = new NodeTree(name, ASTData(translation_unit)); scope = newNode; topScope = newNode; //Top scope is maintained for templates, which need to add themselves to the top scope from where ever they are instantiated //One of Kraken's features is that definition order does not matter. This is done by doing a first pass across the translation unit //to nominally add all the type_def's and function def's to the top scope before they're actually processed for (NodeTree* i : children) { if (i->getDataRef()->getName() == "type_def") { std::string name; if (i->getChildren()[0]->getData().getName() == "template_dec") // It's a template name = concatSymbolTree(i->getChildren()[1]); else //It's not name = concatSymbolTree(i->getChildren()[0]); scope->getDataRef()->scope[name].push_back(new NodeTree("type_def", ASTData(type_def, Symbol(name, true, name)))); //Just a placeholder } } std::cout << "The scope here at first intantiation is " << scope->getDataRef()->toString() << std::endl; } else if (name == "interpreter_directive") { newNode = new NodeTree(name, ASTData(interpreter_directive)); } else if (name == "import" && !current.isTerminal()) { std::string toImport = concatSymbolTree(children[0]); newNode = new NodeTree(name, ASTData(import, Symbol(toImport, true))); //Do the imported file too NodeTree* outsideTranslationUnit = importer->import(toImport + ".krak"); scope->getDataRef()->scope[toImport].push_back(outsideTranslationUnit); //Put this transation_unit in the scope as it's files name //Now add it to scope for (auto i = outsideTranslationUnit->getDataRef()->scope.begin(); i != outsideTranslationUnit->getDataRef()->scope.end(); i++) for (auto j : i->second) scope->getDataRef()->scope[i->first].push_back(j); return newNode; // Don't need children of import } else */if (name == "identifier") { //Make sure we get the entire name std::string lookupName = concatSymbolTree(from); std::cout << "Looking up: " << lookupName << std::endl; newNode = scopeLookup(scope, lookupName, types); if (newNode == NULL) { std::cout << "scope lookup error! Could not find " << lookupName << " in identifier " << std::endl; throw "LOOKUP ERROR: " + lookupName; } } else if (name == "type_def") { //If it is an alisis of a type std::string typeAlias; std::cout << "The scope here at type_def is " << scope->getDataRef()->toString() << std::endl; if (children[1]->getData().getName() == "type") { typeAlias = concatSymbolTree(children[0]); newNode = scope->getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit. //This is done so that types that reference each other can be declared in any order //newNode = new NodeTree(name, ASTData(type_def, Symbol(typeAlias, true, typeAlias), typeFromTypeNode(children[1], scope, templateTypeReplacements))); newNode->getDataRef()->valueType = typeFromTypeNode(children[1], scope, templateTypeReplacements); skipChildren.insert(0); //Don't want any children, it's unnecessary for ailising skipChildren.insert(1); } else { //Is a struct or class Type* objectType = NULL; if (children[0]->getData().getName() == "template_dec") { typeAlias = concatSymbolTree(children[1]); std::cout << "Template Type!"<getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit. //This is done so that types that reference each other can be declared in any order // std::cout << "typeAlias is " << typeAlias << " and newNode is " << newNode << std::endl; //newNode = new NodeTree(name, ASTData(type_def, Symbol(typeAlias, true, typeAlias))); //So we give this typedef its name without any template types and make its type template_type, and point to this from node. //Then, when this template is instantiated, it will run transform on from with the types filled in. objectType = new Type(template_type, from); } else { typeAlias = concatSymbolTree(children[0]); newNode = scope->getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit. //This is done so that types that reference each other can be declared in any order //newNode = new NodeTree(name, ASTData(type_def, Symbol(typeAlias, true, typeAlias))); objectType = new Type(newNode); skipChildren.insert(0); //Identifier lookup will be ourselves, as we just added ourselves to the scope } newNode->getDataRef()->valueType = objectType; //Type is self-referential since this is the definition } //scope->getDataRef()->scope[typeAlias].push_back(newNode); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); //Templates are done here. No need to go farther if (children[0]->getData().getName() == "template_dec") return newNode; scope = newNode; } else if (name == "function") { std::string functionName; //If this is a function template if (children[0]->getData().getName() == "template_dec") { functionName = concatSymbolTree(children[2]); newNode = new NodeTree(name, ASTData(function, Symbol(functionName, true), new Type(template_type, from))); scope->getDataRef()->scope[functionName].push_back(newNode); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); std::map yetToBeInstantiatedTemplateTypes; //So that template types (like T) that have not been placed yet are found and given //a special Type() - baseType = template_type_type yetToBeInstantiatedTemplateTypes[concatSymbolTree(children[0]->getChildren()[1])] = new Type(template_type_type); //This may have to be combined with templateTypeReplacements if we do templated member functions inside of templated classes auto transChildren = transformChildren(slice(children,3,-2), std::set(), newNode, types, yetToBeInstantiatedTemplateTypes); std::cout << "Template function " << functionName << " has these parameters: "; for (auto i : transChildren) std::cout << "||" << i->getDataRef()->toString() << "|| "; std::cout << "??||" << std::endl; newNode->addChildren(transChildren); std::cout << "Finished Non-Instantiated Template function " << functionName << std::endl; return newNode; } functionName = concatSymbolTree(children[1]); newNode = new NodeTree(name, ASTData(function, Symbol(functionName, true), typeFromTypeNode(children[0], scope, templateTypeReplacements))); skipChildren.insert(0); skipChildren.insert(1); scope->getDataRef()->scope[functionName].push_back(newNode); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); scope = newNode; // auto transChildren = transformChildren(children, skipChildren, scope, types); // std::cout << functionName << " "; // for (auto i : transChildren) // std::cout << "||" << i->getDataRef()->toString() << "|| "; // std::cout << "??||" << std::endl; // newNode->addChildren(transChildren); // return newNode; std::cout << "finished function (kinda, not children) " << functionName << std::endl; } else if (name == "code_block") { newNode = new NodeTree(name, ASTData(code_block)); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); scope = newNode; } else if (name == "typed_parameter") { //newNode = transform(children[1]); //Transform to get the identifier std::string parameterName = concatSymbolTree(children[1]); std::cout << "Doing typed parameter " << parameterName << std::endl; //std::string typeString = concatSymbolTree(children[0]);//Get the type (left child) and set our new identifer to be that type newNode = new NodeTree("identifier", ASTData(identifier, Symbol(parameterName, true), typeFromTypeNode(children[0], scope, templateTypeReplacements))); scope->getDataRef()->scope[parameterName].push_back(newNode); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); std::cout << "Done doing typed_parameter " << parameterName << std::endl; return newNode; } else if (name == "boolean_expression" || name == "and_boolean_expression" || name == "bool_exp") { //If this is an actual part of an expression, not just a premoted term if (children.size() > 1) { //We do children first so we can do appropriate scope searching with types (yay operator overloading!) skipChildren.insert(1); std::vector*> transformedChildren = transformChildren(children, skipChildren, scope, types, templateTypeReplacements); std::string functionCallString = concatSymbolTree(children[1]); NodeTree* function = doFunction(scope, functionCallString, transformedChildren, templateTypeReplacements); if (function == NULL) { std::cout << "scope lookup error! Could not find " << functionCallString << " in boolean stuff " << std::endl; throw "LOOKUP ERROR: " + functionCallString; } newNode = function; // newNode = new NodeTree(functionCallString, ASTData(function_call, function->getDataRef()->valueType)); // newNode->addChild(function); // First child of function call is a link to the function // newNode->addChildren(transformedChildren); } else { //std::cout << children.size() << std::endl; if (children.size() == 0) return new NodeTree(); return transform(children[0], scope, types, templateTypeReplacements); //Just a promoted term, so do child } //Here's the order of ops stuff } else if (name == "expression" || name == "shiftand" || name == "term" || name == "unarad" || name == "access_operation") { //unarad can ride through, it should always just be a promoted child //If this is an actual part of an expression, not just a premoted child if (children.size() > 2) { NodeTree* lhs = transform(children[0], scope, std::vector(), templateTypeReplacements); //LHS does not inherit types NodeTree* rhs; if (name == "access_operation") { std::cout << "lhs is: " << lhs->getDataRef()->toString() << std::endl; rhs = transform(children[2], lhs->getDataRef()->valueType->typeDefinition, types, templateTypeReplacements); //If an access operation, then the right side will be in the lhs's type's scope } else rhs = transform(children[2], scope, types, templateTypeReplacements); std::string functionCallName = concatSymbolTree(children[1]); //std::cout << "scope lookup from expression or similar" << std::endl; std::vector*> transformedChildren; transformedChildren.push_back(lhs); transformedChildren.push_back(rhs); newNode = doFunction(scope, functionCallName, transformedChildren, templateTypeReplacements); if (newNode == NULL) { std::cout << "scope lookup error! Could not find " << functionCallName << " in expression " << std::endl; throw "LOOKUP ERROR: " + functionCallName; } // //Set the value of this function call if (newNode->getDataRef()->valueType == NULL && rhs->getDataRef()->valueType) newNode->getDataRef()->valueType = rhs->getDataRef()->valueType; else newNode->getDataRef()->valueType = NULL; std::cout << "function call to " << functionCallName << " - " << newNode->getName() << " is now " << newNode->getDataRef()->valueType << std::endl; return newNode; //skipChildren.insert(1); } else if (children.size() == 2) { //Is template instantiation return findOrInstantiateFunctionTemplate(children, scope, types, templateTypeReplacements); } else { return transform(children[0], scope, types, templateTypeReplacements); //Just a promoted child, so do it instead } } else if (name == "factor") { //Do factor here, as it has all the weird unary operators //If this is an actual part of an expression, not just a premoted child //NO SUPPORT FOR CASTING YET std::string funcName; if (children.size() == 2) { funcName = concatSymbolTree(children[0]); NodeTree* param; if (funcName == "*" || funcName == "&" || funcName == "++" || funcName == "--" || funcName == "-" || funcName == "!" || funcName == "~") param = transform(children[1], scope, types, templateTypeReplacements); else funcName = concatSymbolTree(children[1]), param = transform(children[0], scope, types, templateTypeReplacements); //std::cout << "scope lookup from factor" << std::endl; std::vector*> transformedChildren; transformedChildren.push_back(param); NodeTree* function = doFunction(scope, funcName, transformedChildren, templateTypeReplacements); if (function == NULL) { std::cout << "scope lookup error! Could not find " << funcName << " in factor " << std::endl; throw "LOOKUP ERROR: " + funcName; } return function; } else if (children.size() >= 4) { //Array brackets [] funcName = "[]"; std::vector*> transformedChildren; transformedChildren.push_back(transform(children[0], scope, types, templateTypeReplacements)); transformedChildren.push_back(transform(children[2], scope, types, templateTypeReplacements)); NodeTree* function = doFunction(scope, funcName, transformedChildren, templateTypeReplacements); if (function == NULL) { std::cout << "scope lookup error! Could not find " << funcName << " in factor " << std::endl; throw "LOOKUP ERROR: " + funcName; } return function; } else { return transform(children[0], scope, types, templateTypeReplacements); //Just a promoted child, so do it instead } } else if (name == "statement") { newNode = new NodeTree(name, ASTData(statement)); } else if (name == "if_statement") { newNode = new NodeTree(name, ASTData(if_statement)); } else if (name == "while_loop") { newNode = new NodeTree(name, ASTData(while_loop)); } else if (name == "for_loop") { newNode = new NodeTree(name, ASTData(for_loop)); } else if (name == "return_statement") { newNode = new NodeTree(name, ASTData(return_statement)); } else if (name == "assignment_statement") { newNode = new NodeTree(name, ASTData(assignment_statement)); std::string assignFuncName = concatSymbolTree(children[1]); if (assignFuncName == "=") { newNode->addChild(transform(children[0], scope, types, templateTypeReplacements)); newNode->addChild(transform(children[2], scope, types, templateTypeReplacements)); } else { //For assignments like += or *=, expand the syntatic sugar. NodeTree* lhs = transform(children[0], scope, types, templateTypeReplacements); NodeTree* rhs = transform(children[2], scope, types, templateTypeReplacements); std::vector*> transformedChildren; transformedChildren.push_back(lhs); transformedChildren.push_back(rhs); std::string functionName = assignFuncName.substr(0,1); NodeTree* operatorCall = doFunction(scope, functionName, transformedChildren, templateTypeReplacements); if (operatorCall == NULL) { std::cout << "scope lookup error! Could not find " << functionName << " in assignment_statement " << std::endl; throw "LOOKUP ERROR: " + functionName; } newNode->addChild(lhs); newNode->addChild(operatorCall); } return newNode; } else if (name == "declaration_statement") { newNode = new NodeTree(name, ASTData(declaration_statement)); // NodeTree* newIdentifier = transform(children[1], scope); //Transform the identifier // newIdentifier->getDataRef()->valueType = Type(concatSymbolTree(children[0]));//set the type of the identifier std::string newIdentifierStr = concatSymbolTree(children[1]); Type* identifierType = typeFromTypeNode(children[0], scope, templateTypeReplacements); std::cout << "Declaring an identifier " << newIdentifierStr << " to be of type " << identifierType->toString() << std::endl; NodeTree* newIdentifier = new NodeTree("identifier", ASTData(identifier, Symbol(newIdentifierStr, true), identifierType)); scope->getDataRef()->scope[newIdentifierStr].push_back(newIdentifier); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); newNode->addChild(newIdentifier); skipChildren.insert(0); //These, the type and the identifier, have been taken care of. skipChildren.insert(1); } else if (name == "if_comp") { newNode = new NodeTree(name, ASTData(if_comp)); newNode->addChild(new NodeTree("identifier", ASTData(identifier, Symbol(concatSymbolTree(children[0]),true)))); skipChildren.insert(0); //Don't do the identifier. The identifier lookup will fail. That's why we do it here. } else if (name == "simple_passthrough") { newNode = new NodeTree(name, ASTData(simple_passthrough)); } else if (name == "function_call") { std::string functionCallName = concatSymbolTree(children[0]); newNode = new NodeTree(functionCallName, ASTData(function_call, Symbol(functionCallName, true))); skipChildren.insert(0); std::vector*> transformedChildren = transformChildren(children, skipChildren, scope, types, templateTypeReplacements); std::cout << "scope lookup from function_call: " << functionCallName << std::endl; for (auto i : children) std::cout << i << " : " << i->getName() << " : " << i->getDataRef()->getName() << std::endl; NodeTree* function = transform(children[0], scope, mapNodesToTypes(transformedChildren), templateTypeReplacements); std::cout << "The thing: " << function << " : " << function->getName() << std::endl; for (auto i : function->getChildren()) std::cout << i->getName() << " "; std::cout << std::endl; newNode->addChild(function); newNode->getDataRef()->valueType = function->getDataRef()->valueType; newNode->addChildren(transformedChildren); return newNode; } else if (name == "parameter") { return transform(children[0], scope, types, templateTypeReplacements); //Don't need a parameter node, just the value } else if (name == "type") { std::string theConcat = concatSymbolTree(from); //We have no symbol, so this will concat our children newNode = new NodeTree(name, ASTData(value, Symbol(theConcat, true), typeFromTypeNode(from, scope, templateTypeReplacements))); } else if (name == "number") { return transform(children[0], scope, types, templateTypeReplacements); } else if (name == "integer") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(from), true), new Type(integer))); } else if (name == "float") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(from), true), new Type(floating))); } else if (name == "double") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(from), true), new Type(double_percision))); } else if (name == "char") { //Is this correct? This might be a useless old thing newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 1))); //Indirection of 1 for array } else if (name == "string" || name == "triple_quoted_string") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 1))); //Indirection of 1 for array }else if (name == "character") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 0))); //Indirection of 0 for character } else { return new NodeTree(); } //Do all children but the ones we skip for (int i = 0; i < children.size(); i++) { if (skipChildren.find(i) == skipChildren.end()) { NodeTree* transChild = transform(children[i], scope, types, templateTypeReplacements); if (transChild->getDataRef()->type) //Only add the children that have a real ASTData::ASTType, that is, legit ASTData. newNode->addChild(transChild); else delete transChild; } } return newNode; } //We use this functionality a lot at different places std::vector*> ASTTransformation::transformChildren(std::vector*> children, std::set skipChildren, NodeTree* scope, std::vector types, std::map templateTypeReplacements) { std::vector*> transformedChildren; // In general, iterate through children and do them. Might not do this for all children. for (int i = 0; i < children.size(); i++) { if (skipChildren.find(i) == skipChildren.end()) { NodeTree* transChild = transform(children[i], scope, types, templateTypeReplacements); if (transChild->getDataRef()->type) //Only add the children that have a real ASTData::ASTType, that is, legit ASTData. transformedChildren.push_back(transChild); else delete transChild; } } return transformedChildren; } //Extract types from already transformed nodes std::vector ASTTransformation::mapNodesToTypes(std::vector*> nodes) { std::vector types; for (auto i : nodes) { std::cout << i->getDataRef()->toString() << std::endl; types.push_back(*(i->getDataRef()->valueType)); } return types; } //Simple way to extract strings from syntax trees. Used often for identifiers, strings, types std::string ASTTransformation::concatSymbolTree(NodeTree* root) { std::string concatString; std::string ourValue = root->getDataRef()->getValue(); if (ourValue != "NoValue") concatString += ourValue; std::vector*> children = root->getChildren(); for (int i = 0; i < children.size(); i++) { concatString += concatSymbolTree(children[i]); } return concatString; } //We pass in the actual children (parameters) to allow us to handle overloaded operator methods (where a parameter is actually the scope of the method) NodeTree* ASTTransformation::doFunction(NodeTree* scope, std::string lookup, std::vector*> nodes, std::map templateTypeReplacements) { auto LLElementIterator = languageLevelScope.find(lookup); NodeTree* newNode; if (LLElementIterator != languageLevelScope.end()) { std::cout << "Checking for early method level operator overload" << std::endl; std::string lookupOp = "operator" + lookup; for (auto i : nodes) std::cout << i->getDataRef()->toString() << " "; std::cout << std::endl; NodeTree* operatorMethod = NULL; if (nodes[0]->getDataRef()->valueType && nodes[0]->getDataRef()->valueType->typeDefinition) operatorMethod = scopeLookup(nodes[0]->getDataRef()->valueType->typeDefinition, lookupOp, mapNodesToTypes(slice(nodes,1,-1))); if (operatorMethod) { //Ok, so we construct std::cout << "Early method level operator was found" << std::endl; //return operatorMethod; NodeTree* newNode = new NodeTree(lookupOp, ASTData(function_call, Symbol(lookupOp, true))); NodeTree* dotFunctionCall = new NodeTree(".", ASTData(function_call, Symbol(".", true))); dotFunctionCall->addChild(languageLevelScope["."][0]); //function definition dotFunctionCall->addChild(nodes[0]); // The object whose method we're calling dotFunctionCall->addChild(operatorMethod); //The method we're calling newNode->addChild(dotFunctionCall); // First child of function call is a link to the function definition newNode->addChildren(slice(nodes, 1, -1)); //The rest of the parameters to the operator //Set the value of this function call newNode->getDataRef()->valueType = operatorMethod->getDataRef()->valueType; return newNode; } std::cout << "Early method level operator was NOT found" << std::endl; } newNode = new NodeTree(lookup, ASTData(function_call, Symbol(lookup, true))); NodeTree* function = scopeLookup(scope, lookup, mapNodesToTypes(nodes)); newNode->addChild(function); newNode->addChildren(nodes); //Specially handle dereference and address of to assign the correct type //We need some significant other type corrections here, maybe to the point of being their own function. (int + float, etc.) for (auto i : nodes) std::cout << i->getDataRef()->toString() << " "; std::cout< oldTypes = mapNodesToTypes(nodes); if ((nodes.size() != 2 && lookup == "*") || lookup == "&" || lookup == "[]") { Type* newType = oldTypes[0].clone(); if (lookup == "*" || lookup == "[]") newType->decreaseIndirection(); else newType->increaseIndirection(); newNode->getDataRef()->valueType = newType, std::cout << "Operator " + lookup << " is altering indirection "<< std::endl; } else { newNode->getDataRef()->valueType = function->getDataRef()->valueType, std::cout << "Some other ||" << lookup << "||" << std::endl; } return newNode; } //Search recursively through levels of scope (each ASTData, that is, every node, has its own scope) //We pass in types so that if we're searching for a function we can find the right overloaded one NodeTree* ASTTransformation::scopeLookup(NodeTree* scope, std::string lookup, std::vector types) { //We first search the languageLevelScope to see if it's an operator. If so, we modifiy the lookup with a preceding "operator" auto LLElementIterator = languageLevelScope.find(lookup); if (LLElementIterator != languageLevelScope.end()) lookup = "operator" + lookup; //Search the map auto scopeMap = scope->getDataRef()->scope; auto elementIterator = scopeMap.find(lookup); for (auto i : scopeMap) std::cout << i.first << " "; std::cout << std::endl; // if (elementIterator != scopeMap.end()) { for (auto i = elementIterator->second.begin(); i != elementIterator->second.end(); i++) { //Types and functions cannot have the same name, and types very apparently do not have parameter types, so check and short-circuit if ((*i)->getDataRef()->type == type_def) return *i; std::cout << lookup << " has " << elementIterator->second.size() << " possible solutions" << std::endl; std::vector*> children = (*i)->getChildren(); //We subtract one from the children to get the type size only if there is at least one child AND // the last node is actually a body node, as it may not have been generated yet if we're in the body //and this function is recursive or if this is a non-instantiated template function if (types.size() != ((children.size() > 0 && children[children.size()-1]->getDataRef()->type == code_block) ? children.size()-1 : children.size())) { std::cout << "Type sizes do not match between two " << lookup << "(" << types.size() << "," << ((children.size() > 0 && children[children.size()-1]->getDataRef()->type == code_block) ? children.size()-1 : children.size()) << "), types are: "; for (auto j : types) std::cout << j.toString() << " "; std::cout << std::endl; continue; } bool typesMatch = true; for (int j = 0; j < types.size(); j++) { Type* tmpType = children[j]->getDataRef()->valueType; //Don't worry if types don't match if it's a template type // std::cout << "Checking for segfaults, we have" << std::endl; // std::cout << types[j].toString() << std::endl; // std::cout << tmpType->toString() << std::endl; // std::cout << "Done!" << std::endl; if (types[j] != *tmpType && tmpType->baseType != template_type_type) { typesMatch = false; std::cout << "Types do not match between two " << lookup << " " << types[j].toString(); std::cout << " vs " << children[j]->getDataRef()->valueType->toString() << std::endl; break; } } if (typesMatch) return *i; } } //if it doesn't exist, try the enclosing scope if it exists. auto enclosingIterator = scopeMap.find("~enclosing_scope"); if (enclosingIterator != scopeMap.end()) { // std::cout << "upper scope exists, searching it for " << lookup << std::endl; NodeTree* upperResult = scopeLookup(enclosingIterator->second[0], lookup, types); if (upperResult) return upperResult; } //std::cout << "upper scope does not exist" << std::endl; std::cout << "could not find " << lookup << " in standard scope, checking for operator" << std::endl; //Note that we don't check for types. At some point we should, as we don't know how to add objects/structs without overloaded operators, etc //Also, we've already searched for the element because this is also how we keep track of operator overloading if (LLElementIterator != languageLevelScope.end()) { std::cout << "found it at language level as operator." << std::endl; return LLElementIterator->second[0]; } std::cout << "Did not find, returning NULL" << std::endl; return NULL; } //Create a type from a syntax tree. This can get complicated with templates Type* ASTTransformation::typeFromTypeNode(NodeTree* typeNode, NodeTree* scope, std::map templateTypeReplacements) { std::string typeIn; typeIn = concatSymbolTree(typeNode); int indirection = 0; ValueType baseType; NodeTree* typeDefinition = NULL; while (typeIn[typeIn.size() - indirection - 1] == '*') indirection++; std::string edited = strSlice(typeIn, 0, -(indirection + 1)); if (edited == "void") baseType = void_type; else if (edited == "bool") baseType = boolean; else if (edited == "int") baseType = integer; else if (edited == "float") baseType = floating; else if (edited == "double") baseType = double_percision; else if (edited == "char") baseType = character; else { baseType = none; typeDefinition = scopeLookup(scope, edited); //So, if this is a template class type and it has already been instantiated, then the above scope lookup will take care of it. //So either this is an uninstatiated template class type, or this is literally a template type T, and we should get it from our //templateTypeReplacements map. We try this first if (templateTypeReplacements.find(edited) != templateTypeReplacements.end()) { std::cout << "Template type! (" << edited << ")" << std::endl; Type* templateTypeReplacement = templateTypeReplacements[edited]->clone(); templateTypeReplacement->modifyIndirection(indirection); return templateTypeReplacement; } else { std::cout << edited << " was not found in templateTypeReplacements" << std::endl; std::cout << "templateTypeReplacements consists of : "; for (auto i : templateTypeReplacements) std::cout << i.first << " "; std::cout << std::endl; } //If not, we better instantiate it and then add it to the highest (not current) scope if (typeDefinition == NULL && typeNode->getChildren().size() > 1 && typeNode->getChildren()[1]->getData().getName() == "template_inst") { std::cout << "Template type: " << edited << " not yet instantiated" << std::endl; //Look up this template's plain definition. It's type has the syntax tree that we need to parse NodeTree* templateDefinition = scopeLookup(scope,concatSymbolTree(typeNode->getChildren()[0])); if (templateDefinition == NULL) std::cout << "Template definition is null!" << std::endl; else std::cout << "Template definition is not null!" << std::endl; NodeTree* templateSyntaxTree = templateDefinition->getDataRef()->valueType->templateDefinition; //Create a new map of template type names to actual types. std::map newTemplateTypeReplacement; std::string templateParameterName = concatSymbolTree(templateSyntaxTree->getChildren()[0]->getChildren()[1]); Type* replacementType = typeFromTypeNode(typeNode->getChildren()[1]->getChildren()[1], scope, templateTypeReplacements); newTemplateTypeReplacement[templateParameterName] = replacementType; std::string classNameWithoutTemplate = concatSymbolTree(typeNode->getChildren()[0]); std::string fullyInstantiatedName = classNameWithoutTemplate + "<" + replacementType->toString() + ">"; typeDefinition = new NodeTree("type_def", ASTData(type_def, Symbol(fullyInstantiatedName, true, fullyInstantiatedName))); typeDefinition->getDataRef()->valueType = new Type(typeDefinition);; //Type is self-referential since this is the definition //Note that we're adding to the current top scope. This makes it more efficient by preventing multiple instantiation and should not cause any problems //It also makes sure it gets generated in the right place topScope->getDataRef()->scope[fullyInstantiatedName].push_back(typeDefinition); topScope->addChild(typeDefinition); //Add this object the the highest scope's //Note that the instantiated template's scope is the template's definition. typeDefinition->getDataRef()->scope["~enclosing_scope"].push_back(templateDefinition); std::set skipChildren; skipChildren.insert(0); //Don't do the template part skipChildren.insert(1); //Identifier lookup will be ourselves, as we just added ourselves to the scope typeDefinition->addChildren(transformChildren(templateSyntaxTree->getChildren(), skipChildren, typeDefinition, std::vector(), newTemplateTypeReplacement)); std::cout << "Done instantating " << fullyInstantiatedName << " that had template parameter " << templateParameterName << " with " << replacementType->toString() << std::endl; } else if (typeDefinition == NULL) { std::cout << "Could not find type " << edited << ", returning NULL" << std::endl; return NULL; } else { std::cout << "Type: " << edited << " already instantiated with " << typeDefinition << ", will be " << Type(baseType, typeDefinition, indirection).toString() << std::endl; } } Type* toReturn = new Type(baseType, typeDefinition, indirection); std::cout << "Returning type " << toReturn->toString() << std::endl; return toReturn; } NodeTree* ASTTransformation::findOrInstantiateFunctionTemplate(std::vector*> children, NodeTree* scope, std::vector types, std::map templateTypeReplacements) { //First look to see if we can find this already instantiated std::cout << "Finding or instantiating templated function" << std::endl; std::string functionName = concatSymbolTree(children[0]); Type* templateActualType = typeFromTypeNode(children[1]->getChildren()[1], scope, templateTypeReplacements); std::string fullyInstantiatedName = functionName + "<" + templateActualType->toString() + ">"; std::cout << "Looking for " << fullyInstantiatedName << std::endl; std::cout << "Types are : "; for (auto i : types) std::cout << " " << i.toString(); std::cout << std::endl; NodeTree* instantiatedFunction = scopeLookup(scope, fullyInstantiatedName,types); //If it already exists, return it if (instantiatedFunction) { std::cout << fullyInstantiatedName << " already exists! Returning" << std::endl; return instantiatedFunction; } else { std::cout << fullyInstantiatedName << " does NOT exist" << std::endl; } //Otherwise, we're going to instantiate it //Find the template definition NodeTree* templateDefinition = scopeLookup(scope,functionName,types); if (templateDefinition == NULL) { std::cout << functionName << " search turned up null, returing null" << std::endl; return NULL; } NodeTree* templateSyntaxTree = templateDefinition->getDataRef()->valueType->templateDefinition; std::string templateParameterName = concatSymbolTree(templateSyntaxTree->getChildren()[0]->getChildren()[1]); std::map newTemplateTypeReplacement; newTemplateTypeReplacement[templateParameterName] = templateActualType; std::vector*> templateChildren = templateSyntaxTree->getChildren(); for (int i = 0; i < templateChildren.size(); i++) std::cout << ", " << i << " : " << templateChildren[i]->getDataRef()->getName(); std::cout << std::endl; instantiatedFunction = new NodeTree("function", ASTData(function, Symbol(fullyInstantiatedName, true), typeFromTypeNode(templateChildren[1], scope, newTemplateTypeReplacement))); std::set skipChildren; skipChildren.insert(0); skipChildren.insert(1); skipChildren.insert(2); scope->getDataRef()->scope[fullyInstantiatedName].push_back(instantiatedFunction); instantiatedFunction->getDataRef()->scope["~enclosing_scope"].push_back(templateDefinition->getDataRef()->scope["~enclosing_scope"][0]); //Instantiated Template Function's scope is it's template's definition's scope std::cout << "About to do children of " << functionName << " to " << fullyInstantiatedName << std::endl; instantiatedFunction->addChildren(transformChildren(templateSyntaxTree->getChildren(), skipChildren, instantiatedFunction, std::vector(), newTemplateTypeReplacement)); topScope->getDataRef()->scope[fullyInstantiatedName].push_back(instantiatedFunction); topScope->addChild(instantiatedFunction); //Add this object the the highest scope's std::cout << "Fully Instantiated function " << functionName << " to " << fullyInstantiatedName << std::endl; return instantiatedFunction; }