#include "ASTTransformation.h" ASTTransformation::ASTTransformation(Importer *importerIn) { importer = importerIn; //Set up language level special scope. (the final scope checked) //Note the NULL type languageLevelScope["+"].push_back( new NodeTree("function", ASTData(function, Symbol("+", true), NULL))); languageLevelScope["-"].push_back(new NodeTree("function", ASTData(function, Symbol("-", true), NULL))); languageLevelScope["*"].push_back(new NodeTree("function", ASTData(function, Symbol("*", true), NULL))); languageLevelScope["&"].push_back(new NodeTree("function", ASTData(function, Symbol("&", true), NULL))); languageLevelScope["--"].push_back(new NodeTree("function", ASTData(function, Symbol("--", true), NULL))); languageLevelScope["++"].push_back(new NodeTree("function", ASTData(function, Symbol("++", true), NULL))); languageLevelScope["=="].push_back(new NodeTree("function", ASTData(function, Symbol("==", true), NULL))); languageLevelScope["<="].push_back(new NodeTree("function", ASTData(function, Symbol("<=", true), NULL))); languageLevelScope[">="].push_back(new NodeTree("function", ASTData(function, Symbol(">=", true), NULL))); languageLevelScope["<"].push_back(new NodeTree("function", ASTData(function, Symbol("<", true), NULL))); languageLevelScope[">"].push_back(new NodeTree("function", ASTData(function, Symbol(">", true), NULL))); languageLevelScope["&&"].push_back(new NodeTree("function", ASTData(function, Symbol("&&", true), NULL))); languageLevelScope["||"].push_back(new NodeTree("function", ASTData(function, Symbol("||", true), NULL))); languageLevelScope["!"].push_back(new NodeTree("function", ASTData(function, Symbol("!", true), NULL))); languageLevelScope["*="].push_back(new NodeTree("function", ASTData(function, Symbol("*=", true), NULL))); languageLevelScope["+="].push_back(new NodeTree("function", ASTData(function, Symbol("+=", true), NULL))); languageLevelScope["-="].push_back(new NodeTree("function", ASTData(function, Symbol("-=", true), NULL))); languageLevelScope["."].push_back(new NodeTree("function", ASTData(function, Symbol(".", true), NULL))); languageLevelScope["->"].push_back(new NodeTree("function", ASTData(function, Symbol("->", true), NULL))); languageLevelScope["[]"].push_back(new NodeTree("function", ASTData(function, Symbol("[]", true), NULL))); } ASTTransformation::~ASTTransformation() { // } NodeTree* ASTTransformation::transform(NodeTree* from) { //Set up top scope return transform(from, NULL, std::vector()); } NodeTree* ASTTransformation::transform(NodeTree* from, NodeTree* scope, std::vector types) { Symbol current = from->getData(); std::string name = current.getName(); NodeTree* newNode = NULL; std::vector*> children = from->getChildren(); std::set skipChildren; if (name == "translation_unit") { newNode = new NodeTree(name, ASTData(translation_unit)); scope = newNode; } else if (name == "interpreter_directive") { newNode = new NodeTree(name, ASTData(interpreter_directive)); } else if (name == "import" && !current.isTerminal()) { std::string toImport = concatSymbolTree(children[0]); newNode = new NodeTree(name, ASTData(import, Symbol(toImport, true))); //Do the imported file too NodeTree* outsideTranslationUnit = importer->import(toImport + ".krak"); scope->getDataRef()->scope[toImport].push_back(outsideTranslationUnit); //Put this transation_unit in the scope as it's files name //Now add it to scope for (auto i = outsideTranslationUnit->getDataRef()->scope.begin(); i != outsideTranslationUnit->getDataRef()->scope.end(); i++) for (auto j : i->second) scope->getDataRef()->scope[i->first].push_back(j); return newNode; // Don't need children of import } else if (name == "identifier") { //Make sure we get the entire name std::string lookupName = concatSymbolTree(from); std::cout << "Looking up: " << lookupName << std::endl; newNode = scopeLookup(scope, lookupName, types); if (newNode == NULL) { std::cout << "scope lookup error! Could not find " << lookupName << " in identifier " << std::endl; throw "LOOKUP ERROR: " + lookupName; } else if (newNode->getDataRef()->symbol.getName() !=lookupName) { //This happens when the lookup name denotes a member of an object, i.e. obj.foo //The newNode points to obj, not foo. } //newNode = new NodeTree(name, ASTData(identifier, Symbol(concatSymbolTree(children[0]), true))); } else if (name == "type_def") { std::string typeAlias = concatSymbolTree(children[0]); //If it is an alisis of a type if (children[1]->getData().getName() == "type") { newNode = new NodeTree(name, ASTData(type_def, Symbol(typeAlias, true, typeAlias), typeFromString(concatSymbolTree(children[1]), scope))); skipChildren.insert(1); //Don't want any children, it's unnecessary for ailising } else { //Is a struct or class newNode = new NodeTree(name, ASTData(type_def, Symbol(typeAlias, true, typeAlias))); newNode->getDataRef()->valueType = new Type(newNode); //Type is self-referential since this is the definition } scope->getDataRef()->scope[typeAlias].push_back(newNode); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); scope = newNode; skipChildren.insert(0); //Identifier lookup will be ourselves, as we just added ourselves to the scope //return newNode; } else if (name == "function") { std::string functionName = concatSymbolTree(children[1]); newNode = new NodeTree(name, ASTData(function, Symbol(functionName, true), typeFromString(concatSymbolTree(children[0]), scope))); skipChildren.insert(0); skipChildren.insert(1); scope->getDataRef()->scope[functionName].push_back(newNode); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); scope = newNode; // auto transChildren = transformChildren(children, skipChildren, scope, types); // std::cout << functionName << " "; // for (auto i : transChildren) // std::cout << "||" << i->getDataRef()->toString() << "|| "; // std::cout << "??||" << std::endl; // newNode->addChildren(transChildren); // return newNode; std::cout << "finished function " << functionName << std::endl; } else if (name == "code_block") { newNode = new NodeTree(name, ASTData(code_block)); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); scope = newNode; } else if (name == "typed_parameter") { //newNode = transform(children[1]); //Transform to get the identifier std::string parameterName = concatSymbolTree(children[1]); std::string typeString = concatSymbolTree(children[0]);//Get the type (left child) and set our new identifer to be that type newNode = new NodeTree("identifier", ASTData(identifier, Symbol(parameterName, true), typeFromString(typeString, scope))); scope->getDataRef()->scope[parameterName].push_back(newNode); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); return newNode; } else if (name == "boolean_expression" || name == "and_boolean_expression" || name == "bool_exp") { //If this is an actual part of an expression, not just a premoted term if (children.size() > 1) { //We do children first so we can do appropriate scope searching with types (yay operator overloading!) skipChildren.insert(1); std::vector*> transformedChildren = transformChildren(children, skipChildren, scope, types); std::string functionCallString = concatSymbolTree(children[1]); NodeTree* function = doFunction(scope, functionCallString, transformedChildren); if (function == NULL) { std::cout << "scope lookup error! Could not find " << functionCallString << " in boolean stuff " << std::endl; throw "LOOKUP ERROR: " + functionCallString; } newNode = function; // newNode = new NodeTree(functionCallString, ASTData(function_call, function->getDataRef()->valueType)); // newNode->addChild(function); // First child of function call is a link to the function // newNode->addChildren(transformedChildren); } else { //std::cout << children.size() << std::endl; if (children.size() == 0) return new NodeTree(); return transform(children[0], scope, types); //Just a promoted term, so do child } //Here's the order of ops stuff } else if (name == "expression" || name == "shiftand" || name == "term" || name == "unarad" || name == "access_operation") { //unarad can ride through, it should always just be a promoted child //If this is an actual part of an expression, not just a premoted child if (children.size() > 2) { NodeTree* lhs = transform(children[0], scope); //LHS does not inherit types NodeTree* rhs; if (name == "access_operation") rhs = transform(children[2], lhs->getDataRef()->valueType->typeDefinition, types); //If an access operation, then the right side will be in the lhs's type's scope else rhs = transform(children[2], scope, types); std::string functionCallName = concatSymbolTree(children[1]); //std::cout << "scope lookup from expression or similar" << std::endl; std::vector*> transformedChildren; transformedChildren.push_back(lhs); transformedChildren.push_back(rhs); NodeTree* function = doFunction(scope, functionCallName, transformedChildren); if (function == NULL) { std::cout << "scope lookup error! Could not find " << functionCallName << " in expression " << std::endl; throw "LOOKUP ERROR: " + functionCallName; } newNode = function; // newNode = new NodeTree(functionCallName, ASTData(function_call, Symbol(functionCallName, true))); // newNode->addChild(function); // First child of function call is a link to the function definition // newNode->addChild(lhs); // newNode->addChild(rhs); // if (name == "access_operation") // std::cout << "Access Operation: " << lhs->getDataRef()->symbol.getName() << " : " << rhs->getDataRef()->symbol.getName() << std::endl; // std::cout << functionCallName << " - " << function->getName() << " has value type " << function->getDataRef()->valueType << " and rhs " << rhs->getDataRef()->valueType << std::endl; // //Set the value of this function call if (function->getDataRef()->valueType) newNode->getDataRef()->valueType = function->getDataRef()->valueType; else if (rhs->getDataRef()->valueType) newNode->getDataRef()->valueType = rhs->getDataRef()->valueType; else newNode->getDataRef()->valueType = NULL; std::cout << "function call to " << functionCallName << " - " << function->getName() << " is now " << newNode->getDataRef()->valueType << std::endl; return newNode; //skipChildren.insert(1); } else { return transform(children[0], scope, types); //Just a promoted child, so do it instead } } else if (name == "factor") { //Do factor here, as it has all the weird unary operators //If this is an actual part of an expression, not just a premoted child //NO SUPPORT FOR CASTING YET std::string funcName; if (children.size() == 2) { funcName = concatSymbolTree(children[0]); NodeTree* param; if (funcName == "*" || funcName == "&" || funcName == "++" || funcName == "--" || funcName == "-" || funcName == "!" || funcName == "~") param = transform(children[1], scope, types); else funcName = concatSymbolTree(children[1]), param = transform(children[0], scope, types); //std::cout << "scope lookup from factor" << std::endl; std::vector*> transformedChildren; transformedChildren.push_back(param); NodeTree* function = doFunction(scope, funcName, transformedChildren); if (function == NULL) { std::cout << "scope lookup error! Could not find " << funcName << " in factor " << std::endl; throw "LOOKUP ERROR: " + funcName; } return function; } else if (children.size() >= 4) { //Array brackets [] funcName = "[]"; std::vector*> transformedChildren; transformedChildren.push_back(transform(children[0], scope, types)); transformedChildren.push_back(transform(children[2], scope, types)); NodeTree* function = doFunction(scope, funcName, transformedChildren); if (function == NULL) { std::cout << "scope lookup error! Could not find " << funcName << " in factor " << std::endl; throw "LOOKUP ERROR: " + funcName; } return function; } else { return transform(children[0], scope, types); //Just a promoted child, so do it instead } } else if (name == "statement") { newNode = new NodeTree(name, ASTData(statement)); } else if (name == "if_statement") { newNode = new NodeTree(name, ASTData(if_statement)); } else if (name == "while_loop") { newNode = new NodeTree(name, ASTData(while_loop)); } else if (name == "for_loop") { newNode = new NodeTree(name, ASTData(for_loop)); } else if (name == "return_statement") { newNode = new NodeTree(name, ASTData(return_statement)); } else if (name == "assignment_statement") { newNode = new NodeTree(name, ASTData(assignment_statement)); std::string assignFuncName = concatSymbolTree(children[1]); if (assignFuncName == "=") { newNode->addChild(transform(children[0], scope, types)); newNode->addChild(transform(children[2], scope, types)); } else { //For assignments like += or *=, expand the syntatic sugar. NodeTree* lhs = transform(children[0], scope, types); NodeTree* rhs = transform(children[2], scope, types); std::vector*> transformedChildren; transformedChildren.push_back(lhs); transformedChildren.push_back(rhs); std::string functionName = assignFuncName.substr(0,1); NodeTree* operatorCall = doFunction(scope, functionName, transformedChildren); if (operatorCall == NULL) { std::cout << "scope lookup error! Could not find " << functionName << " in assignment_statement " << std::endl; throw "LOOKUP ERROR: " + functionName; } newNode->addChild(lhs); newNode->addChild(operatorCall); } return newNode; } else if (name == "declaration_statement") { newNode = new NodeTree(name, ASTData(declaration_statement)); // NodeTree* newIdentifier = transform(children[1], scope); //Transform the identifier // newIdentifier->getDataRef()->valueType = Type(concatSymbolTree(children[0]));//set the type of the identifier std::string newIdentifierStr = concatSymbolTree(children[1]); std::string typeString = concatSymbolTree(children[0]);//Get the type (left child) and set our new identifer to be that type Type* identifierType = typeFromString(typeString, scope); NodeTree* newIdentifier = new NodeTree("identifier", ASTData(identifier, Symbol(newIdentifierStr, true), identifierType)); scope->getDataRef()->scope[newIdentifierStr].push_back(newIdentifier); newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope); //Now we don't do this thing // if (identifierType->typeDefinition) { // //Is a custom type. Populate this declaration's scope with it's inner declarations // std::vector*> definitions = identifierType->typeDefinition->getChildren(); // for (auto i : definitions) { // //Point to the identifier. May need to change so it points to the declaration or something, with new declarations..... // newIdentifier->getDataRef()->scope[i->get(0)->getDataRef()->symbol.getName()] = i->get(0); //make each declaration's name point to it's definition, like above // } // } newNode->addChild(newIdentifier); skipChildren.insert(0); //These, the type and the identifier, have been taken care of. skipChildren.insert(1); } else if (name == "if_comp") { newNode = new NodeTree(name, ASTData(if_comp)); newNode->addChild(new NodeTree("identifier", ASTData(identifier, Symbol(concatSymbolTree(children[0]),true)))); skipChildren.insert(0); //Don't do the identifier. The identifier lookup will fail. That's why we do it here. } else if (name == "simple_passthrough") { newNode = new NodeTree(name, ASTData(simple_passthrough)); } else if (name == "function_call") { std::string functionCallName = concatSymbolTree(children[0]); newNode = new NodeTree(functionCallName, ASTData(function_call, Symbol(functionCallName, true))); // if (function == NULL) { // std::cout << "scope lookup error! Could not find " << functionCallName << " in function_call " << std::endl; // throw "LOOKUP ERROR: " + functionCallName; // } skipChildren.insert(0); std::vector*> transformedChildren = transformChildren(children, skipChildren, scope, types); std::cout << "scope lookup from function_call: " << functionCallName << std::endl; for (auto i : children) std::cout << i << " : " << i->getName() << " : " << i->getDataRef()->getName() << std::endl; NodeTree* function = transform(children[0], scope, mapNodesToTypes(transformedChildren)); std::cout << "The thing: " << function << " : " << function->getName() << std::endl; for (auto i : function->getChildren()) std::cout << i->getName() << " "; std::cout << std::endl; newNode->addChild(function); newNode->getDataRef()->valueType = function->getDataRef()->valueType; newNode->addChildren(transformedChildren); return newNode; } else if (name == "parameter") { return transform(children[0], scope, types); //Don't need a parameter node, just the value } else if (name == "type") { std::string theConcat = concatSymbolTree(from); //We have no symbol, so this will concat our children newNode = new NodeTree(name, ASTData(value, Symbol(theConcat, true), typeFromString(theConcat, scope))); } else if (name == "number") { return transform(children[0], scope, types); } else if (name == "integer") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(from), true), new Type(integer))); } else if (name == "float") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(from), true), new Type(floating))); } else if (name == "double") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(from), true), new Type(double_percision))); } else if (name == "char") { //Is this correct? This might be a useless old thing newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 1))); //Indirection of 1 for array } else if (name == "string" || name == "triple_quoted_string") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 1))); //Indirection of 1 for array }else if (name == "character") { newNode = new NodeTree(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 0))); //Indirection of 0 for character } else { return new NodeTree(); } //Do all children but the ones we skip for (int i = 0; i < children.size(); i++) { if (skipChildren.find(i) == skipChildren.end()) { NodeTree* transChild = transform(children[i], scope, types); if (transChild->getDataRef()->type) //Only add the children that have a real ASTData::ASTType, that is, legit ASTData. newNode->addChild(transChild); else delete transChild; } } return newNode; } //We use this functionality a lot at different places std::vector*> ASTTransformation::transformChildren(std::vector*> children, std::set skipChildren, NodeTree* scope, std::vector types) { std::vector*> transformedChildren; // In general, iterate through children and do them. Might not do this for all children. for (int i = 0; i < children.size(); i++) { if (skipChildren.find(i) == skipChildren.end()) { NodeTree* transChild = transform(children[i], scope, types); if (transChild->getDataRef()->type) //Only add the children that have a real ASTData::ASTType, that is, legit ASTData. transformedChildren.push_back(transChild); else delete transChild; } } return transformedChildren; } std::vector ASTTransformation::mapNodesToTypes(std::vector*> nodes) { std::vector types; for (auto i : nodes) { std::cout << i->getDataRef()->toString() << std::endl; types.push_back(*(i->getDataRef()->valueType)); } return types; } std::string ASTTransformation::concatSymbolTree(NodeTree* root) { std::string concatString; std::string ourValue = root->getDataRef()->getValue(); if (ourValue != "NoValue") concatString += ourValue; std::vector*> children = root->getChildren(); for (int i = 0; i < children.size(); i++) { concatString += concatSymbolTree(children[i]); } return concatString; } //Overloaded with the actual children to allow us to handle operator methods NodeTree* ASTTransformation::doFunction(NodeTree* scope, std::string lookup, std::vector*> nodes) { // auto LLElementIterator = languageLevelScope.find(lookup); NodeTree* newNode; if (LLElementIterator != languageLevelScope.end()) { std::cout << "Checking for early method level operator overload" << std::endl; std::string lookupOp = "operator" + lookup; for (auto i : nodes) std::cout << i->getDataRef()->toString() << " "; std::cout << std::endl; NodeTree* operatorMethod = NULL; if (nodes[0]->getDataRef()->valueType && nodes[0]->getDataRef()->valueType->typeDefinition) operatorMethod = scopeLookup(nodes[0]->getDataRef()->valueType->typeDefinition, lookupOp, mapNodesToTypes(slice(nodes,1,-1))); if (operatorMethod) { //Ok, so we construct std::cout << "Early method level operator was found" << std::endl; //return operatorMethod; NodeTree* newNode = new NodeTree(lookupOp, ASTData(function_call, Symbol(lookupOp, true))); NodeTree* dotFunctionCall = new NodeTree(".", ASTData(function_call, Symbol(".", true))); dotFunctionCall->addChild(languageLevelScope["."][0]); //function definition dotFunctionCall->addChild(nodes[0]); // The object whose method we're calling dotFunctionCall->addChild(operatorMethod); //The method we're calling newNode->addChild(dotFunctionCall); // First child of function call is a link to the function definition newNode->addChildren(slice(nodes, 1, -1)); //The rest of the parameters to the operator //Set the value of this function call newNode->getDataRef()->valueType = operatorMethod->getDataRef()->valueType; return newNode; } std::cout << "Early method level operator was NOT found" << std::endl; } newNode = new NodeTree(lookup, ASTData(function_call, Symbol(lookup, true))); NodeTree* function = scopeLookup(scope, lookup, mapNodesToTypes(nodes)); newNode->addChild(function); newNode->addChildren(nodes); //Specially handle dereference and address of to assign the correct type //We need some significant other type corrections here, maybe to the point of being their own function. (int + float, etc.) for (auto i : nodes) std::cout << i->getDataRef()->toString() << " "; std::cout< oldTypes = mapNodesToTypes(nodes); if (lookup == "*" || lookup == "&" || lookup == "[]") { Type* newType = oldTypes[0].clone(); lookup == "*" || lookup == "[]" ? newType->indirection-- : newType->indirection++; newNode->getDataRef()->valueType = newType, std::cout << "Operator " + lookup << " is altering indirection "<< std::endl; } else { newNode->getDataRef()->valueType = function->getDataRef()->valueType, std::cout << "Some other ||" << lookup << "||" << std::endl; } return newNode; } NodeTree* ASTTransformation::scopeLookup(NodeTree* scope, std::string lookup, std::vector types) { //We first search the languageLevelScope to see if it's an operator. If so, we modifiy the lookup with a preceding "operator" auto LLElementIterator = languageLevelScope.find(lookup); if (LLElementIterator != languageLevelScope.end()) lookup = "operator" + lookup; //Search the map auto scopeMap = scope->getDataRef()->scope; auto elementIterator = scopeMap.find(lookup); for (auto i : scopeMap) std::cout << i.first << " "; std::cout << std::endl; // if (elementIterator != scopeMap.end()) { for (auto i = elementIterator->second.begin(); i != elementIterator->second.end(); i++) { //Types and functions cannot have the same name, and types very apparently do not have parameter types, so check and short-circuit if ((*i)->getDataRef()->type == type_def) return *i; //return *i; std::vector*> children = (*i)->getChildren(); if (types.size() != ((children.size() > 0) ? children.size()-1 : 0)) { std::cout << "Type sizes do not match between two " << lookup << "(" << types.size() << "," << ((children.size() > 0) ? children.size()-1 : 0) << "), types are: "; for (auto j : types) std::cout << j.toString() << " "; std::cout << std::endl; continue; } bool typesMatch = true; for (int j = 0; j < types.size(); j++) { if (types[j] != *(children[j]->getDataRef()->valueType)) { typesMatch = false; std::cout << "Types do not match between two " << lookup << " " << types[j].toString() << " vs " << children[j]->getDataRef()->valueType->toString() << std::endl; break; } } if (typesMatch) return *i; } } //if it doesn't exist, try the enclosing scope if it exists. auto enclosingIterator = scopeMap.find("~enclosing_scope"); if (enclosingIterator != scopeMap.end()) { // std::cout << "upper scope exists, searching it for " << lookup << std::endl; NodeTree* upperResult = scopeLookup(enclosingIterator->second[0], lookup, types); if (upperResult) return upperResult; } //std::cout << "upper scope does not exist" << std::endl; std::cout << "could not find " << lookup << " in standard scope, checking for operator" << std::endl; //Note that we don't check for types. At some point we should, as we don't know how to add objects/structs without overloaded operators, etc //Also, we've already searched for the element because this is also how we keep track of operator overloading if (LLElementIterator != languageLevelScope.end()) { std::cout << "found it at language level as operator." << std::endl; return LLElementIterator->second[0]; } std::cout << "Did not find, returning NULL" << std::endl; return NULL; } Type* ASTTransformation::typeFromString(std::string typeIn, NodeTree* scope) { int indirection = 0; ValueType baseType; NodeTree* typeDefinition = NULL; while (typeIn[typeIn.size() - indirection - 1] == '*') indirection++; std::string edited = strSlice(typeIn, 0, -(indirection + 1)); if (edited == "void") baseType = void_type; else if (edited == "bool") baseType = boolean; else if (edited == "int") baseType = integer; else if (edited == "float") baseType = floating ; else if (edited == "double") baseType = double_percision; else if (edited == "char") baseType = character; else { baseType = none; typeDefinition = scopeLookup(scope, edited); //std::cout << "scopeLookup of type " << edited << " returned " << typeDefinition << std::endl; } return new Type(baseType, typeDefinition, indirection); }