#include "CGenerator.h" CGenerator::CGenerator() : generatorString("__C__") { tabLevel = 0; id = 0; function_header = "fun_"; functionTypedefString = ""; functionTypedefStringPre = ""; } CGenerator::~CGenerator() { } // Note the use of std::pair to hold two strings - the running string for the header file and the running string for the c file. void CGenerator::generateCompSet(std::map*> ASTs, std::string outputName) { //Generate an entire set of files std::string buildString = "#!/bin/sh\ncc -g -std=c99 "; std::cout << "\n\n =====GENERATE PASS===== \n\n" << std::endl; std::cout << "\n\nGenerate pass for: " << outputName << std::endl; buildString += outputName + ".c "; std::ofstream outputCFile, outputHFile; outputCFile.open(outputName + "/" + outputName + ".c"); outputHFile.open(outputName + "/" + outputName + ".h"); if (outputCFile.is_open() || outputHFile.is_open()) { // Prequel common to all files auto chPair = generateTranslationUnit(outputName, ASTs); outputHFile << "#include \n#include \n#include \n" << chPair.first; outputCFile << "#include \"" + outputName + ".h\"\n\n" << chPair.second; } else { std::cerr << "Cannot open file " << outputName << ".c/h" << std::endl; } outputCFile.close(); outputHFile.close(); buildString += linkerString; buildString += "-o " + outputName; std::ofstream outputBuild; outputBuild.open(outputName + "/" + split(outputName, '/').back() + ".sh"); outputBuild << buildString; outputBuild.close(); std::cout << "DEFER DOUBLE STACK " << deferDoubleStack.size() << std::endl; } std::string CGenerator::tabs() { std::string returnTabs; for (int i = 0; i < tabLevel; i++) returnTabs += "\t"; return returnTabs; } std::string CGenerator::getID() { return intToString(id++); } std::string CGenerator::generateClassStruct(NodeTree* from) { auto data = from->getData(); auto children = from->getChildren(); std::string objectString = "struct __struct_dummy_" + scopePrefix(from) + CifyName(data.symbol.getName()) + "__ {\n"; tabLevel++; for (int i = 0; i < children.size(); i++) { std::cout << children[i]->getName() << std::endl; if (children[i]->getName() != "function") objectString += tabs() + generate(children[i], nullptr).oneString() + "\n"; } tabLevel--; objectString += "};"; return objectString; } // This method recurseivly generates all aliases of some definition std::string CGenerator::generateAliasChains(std::map*> ASTs, NodeTree* definition) { std::string output; for (auto trans : ASTs) { for (auto i = trans.second->getDataRef()->scope.begin(); i != trans.second->getDataRef()->scope.end(); i++) { for (auto declaration : i->second) { auto declarationData = declaration->getDataRef(); if (declarationData->type == type_def && declarationData->valueType->typeDefinition != declaration && declarationData->valueType->typeDefinition == definition) { output += "typedef " + scopePrefix(definition) + CifyName(definition->getDataRef()->symbol.getName()) + " " + scopePrefix(declaration) + CifyName(declarationData->symbol.getName()) + ";\n"; // Recursively add the ones that depend on this one output += generateAliasChains(ASTs, declaration); } } } } return output; } bool CGenerator::isUnderTranslationUnit(NodeTree* from, NodeTree* node) { auto scope = from->getDataRef()->scope; for (auto i : scope) for (auto j : i.second) if (j == node) return true; auto upper = scope.find("~enclosing_scope"); if (upper != scope.end()) return isUnderTranslationUnit(upper->second[0], node); return false; } NodeTree* CGenerator::highestScope(NodeTree* node) { auto it = node->getDataRef()->scope.find("~enclosing_scope"); while (it != node->getDataRef()->scope.end()) { node = it->second[0]; it = node->getDataRef()->scope.find("~enclosing_scope"); } return node; } // We do translation units in their own function so they can do the pariwise h/c stuff and regualr in function body generation does not std::pair CGenerator::generateTranslationUnit(std::string name, std::map*> ASTs) { // We now pass in the entire map of ASTs and loop through them so that we generate out into a single file std::string cOutput, hOutput; // Ok, so we've got to do this in passes to preserve mututally recursive definitions. // // First Pass: All classes get "struct dummy_thing; typedef struct dummy_thing thing;". // Also, other typedefs follow after their naming. // Second Pass: All top level variable declarations // Third Pass: Define all actual structs of a class, in correct order (done with posets) // Fourth Pass: Declare all function prototypes (as functions may be mutually recursive too). // (this includes object methods) // Fifth Pass: Define all functions (including object methods). // However, most of these do not actually have to be done as separate passes. First, second, fourth, and fifth // are done simultanously, but append to different strings that are then concatinated properly, in order. std::string importIncludes = "/**\n * Import Includes\n */\n\n"; std::string topLevelCPassthrough = "/**\n * Top Level C Passthrough\n */\n\n"; std::string variableExternDeclarations = "/**\n * Extern Variable Declarations \n */\n\n"; std::string plainTypedefs = "/**\n * Plain Typedefs\n */\n\n"; std::string variableDeclarations = "/**\n * Variable Declarations \n */\n\n"; std::string classStructs = "/**\n * Class Structs\n */\n\n"; std::string functionPrototypes = "/**\n * Function Prototypes\n */\n\n"; std::string functionDefinitions = "/**\n * Function Definitions\n */\n\n"; // There also exists functionTypedefString which is a member variable that keeps // track of utility typedefs that allow our C type generation to be more sane // it is emitted in the h file right before functionPrototypes Poset*> typedefPoset; for (auto trans : ASTs) { auto children = trans.second->getChildren(); for (int i = 0; i < children.size(); i++) { if (children[i]->getDataRef()->type == type_def) { // If we're an alias type, continue. We handle those differently if (children[i]->getDataRef()->valueType->typeDefinition != children[i]) continue; typedefPoset.addVertex(children[i]); // We add this definition by itself just in case there are no dependencies. // If it has dependencies, there's no harm in adding it here // Go through every child in the class looking for declaration statements. For each of these that is not a primitive type // we will add a dependency from this definition to that definition in the poset. std::vector*> classChildren = children[i]->getChildren(); for (auto j : classChildren) { if (j->getDataRef()->type == declaration_statement) { Type* decType = j->getChildren()[0]->getDataRef()->valueType; // Type of the declaration if (decType->typeDefinition && decType->getIndirection() == 0) // If this is a custom type and not a pointer typedefPoset.addRelationship(children[i], decType->typeDefinition); // Add a dependency } } } } } //Now generate the typedef's in the correct, topological order for (NodeTree* i : typedefPoset.getTopoSort()) classStructs += generateClassStruct(i) + "\n"; // Declare everything in translation unit scope here (now for ALL translation units). (allows stuff from other files, automatic forward declarations) // Also, everything in all of the import's scopes // Also c passthrough for (auto trans : ASTs) { // First go through and emit all the passthroughs, etc for (auto i : trans.second->getChildren()) { if (i->getDataRef()->type == if_comp) topLevelCPassthrough += generate(i, nullptr).oneString(); } for (auto i = trans.second->getDataRef()->scope.begin(); i != trans.second->getDataRef()->scope.end(); i++) { for (auto declaration : i->second) { std::vector*> decChildren = declaration->getChildren(); ASTData declarationData = declaration->getData(); switch(declarationData.type) { case identifier: { auto parent = declaration->getDataRef()->scope["~enclosing_scope"][0]; if (parent->getChildren().size() == 1) variableDeclarations += ValueTypeToCType(declarationData.valueType, scopePrefix(declaration) + declarationData.symbol.getName()) + "; /*identifier*/\n"; else variableDeclarations += ValueTypeToCType(declarationData.valueType, generate(parent->getChildren()[0], nullptr, true, nullptr).oneString()) + " = " + generate(parent->getChildren()[1], nullptr, true, nullptr).oneString() + ";"; variableExternDeclarations += "extern " + ValueTypeToCType(declarationData.valueType, declarationData.symbol.getName()) + "; /*extern identifier*/\n"; break; } case function: { if (declarationData.valueType->baseType == template_type) functionPrototypes += "/* template function " + declarationData.symbol.toString() + " */\n"; else if (decChildren.size() == 0) //Not a real function, must be a built in passthrough functionPrototypes += "/* built in function: " + declarationData.symbol.toString() + " */\n"; else { std::string nameDecoration, parameters; if (declarationData.closedVariables.size()) parameters += closureStructType(declarationData.closedVariables) + "*"; for (int j = 0; j < decChildren.size()-1; j++) { if (j > 0 || declarationData.closedVariables.size() ) parameters += ", "; parameters += ValueTypeToCType(decChildren[j]->getData().valueType, generate(decChildren[j], nullptr).oneString()); nameDecoration += "_" + ValueTypeToCTypeDecoration(decChildren[j]->getData().valueType); } functionPrototypes += "\n" + ValueTypeToCType(declarationData.valueType->returnType, ((declarationData.symbol.getName() == "main") ? "" : function_header + scopePrefix(declaration)) + CifyName(declarationData.symbol.getName() + nameDecoration)) + "(" + parameters + "); /*func*/\n"; // generate function std::cout << "Generating " << scopePrefix(declaration) + CifyName(declarationData.symbol.getName()) << std::endl; functionDefinitions += generate(declaration, nullptr).oneString(); } } break; case type_def: //type plainTypedefs += "/*typedef " + declarationData.symbol.getName() + " */\n"; if (declarationData.valueType->baseType == template_type) { plainTypedefs += "/* non instantiated template " + declarationData.symbol.getName() + " */"; } else if (declarationData.valueType->typeDefinition != declaration) { if (declarationData.valueType->typeDefinition) continue; // Aliases of objects are done with the thing it alises // Otherwise, we're actually a renaming of a primitive, can generate here plainTypedefs += "typedef " + ValueTypeToCType(declarationData.valueType, scopePrefix(declaration) + CifyName(declarationData.symbol.getName())) + ";\n"; plainTypedefs += generateAliasChains(ASTs, declaration); } else { plainTypedefs += "typedef struct __struct_dummy_" + scopePrefix(declaration) + CifyName(declarationData.symbol.getName()) + "__ " + scopePrefix(declaration) + CifyName(declarationData.symbol.getName()) + ";\n"; functionPrototypes += "/* Method Prototypes for " + declarationData.symbol.getName() + " */\n"; // We use a seperate string for this because we only include it if this is the file we're defined in std::string objectFunctionDefinitions = "/* Method Definitions for " + declarationData.symbol.getName() + " */\n"; for (int j = 0; j < decChildren.size(); j++) { std::cout << decChildren[j]->getName() << std::endl; if (decChildren[j]->getName() == "function" && decChildren[j]->getDataRef()->valueType->baseType != template_type) //If object method and not template objectFunctionDefinitions += generateObjectMethod(declaration, decChildren[j], &functionPrototypes) + "\n"; } // Add all aliases to the plain typedefs. This will add any alias that aliases to this object, and any alias that aliases to that, and so on plainTypedefs += generateAliasChains(ASTs, declaration); functionPrototypes += "/* Done with " + declarationData.symbol.getName() + " */\n"; // include methods functionDefinitions += objectFunctionDefinitions + "/* Done with " + declarationData.symbol.getName() + " */\n"; } break; default: //std::cout << "Declaration? named " << declaration->getName() << " of unknown type " << ASTData::ASTTypeToString(declarationData.type) << " in translation unit scope" << std::endl; cOutput += "/*unknown declaration named " + declaration->getName() + "*/\n"; hOutput += "/*unknown declaration named " + declaration->getName() + "*/\n"; } } } } hOutput += plainTypedefs + importIncludes + topLevelCPassthrough + functionTypedefStringPre + variableExternDeclarations + classStructs + functionTypedefString + functionPrototypes; cOutput += variableDeclarations + functionDefinitions; return std::make_pair(hOutput, cOutput); } //The enclosing object is for when we're generating the inside of object methods. They allow us to check scope lookups against the object we're in CCodeTriple CGenerator::generate(NodeTree* from, NodeTree* enclosingObject, bool justFuncName, NodeTree* enclosingFunction) { ASTData data = from->getData(); std::vector*> children = from->getChildren(); //std::string output; CCodeTriple output; switch (data.type) { case translation_unit: { // Should not happen! We do this in it's own function now! std::cerr << "Trying to normal generate a translation unit! That's a nono! (" << from->getDataRef()->toString() << ")" << std::endl; throw "That's not gonna work"; } break; case interpreter_directive: //Do nothing break; case import: return CCodeTriple("/* never reached import? */\n"); case identifier: { std::string preName = ""; std::string postName = ""; bool closed = false; // check for this being a closed over variable // first, get declaring function, if it exists if (enclosingFunction) { if (enclosingFunction->getDataRef()->closedVariables.size()) { std::cout << "WHOH IS A CLOSER" << std::endl; if (enclosingFunction->getDataRef()->closedVariables.find(from) != enclosingFunction->getDataRef()->closedVariables.end()) { preName += "(*closed_variables->"; postName += ")"; closed = true; } } } // enclosing function comes first now, we might have a double closure that both close over the this pointer of an object //but first, if we're this, we should just emit. (assuming enclosing object) (note that technically this would fall through, but for errors) if (data.symbol.getName() == "this") { if (enclosingObject || enclosingFunction) return CCodeTriple(preName + "this" + postName); std::cerr << "Error: this used in non-object scope" << std::endl; throw "Error: this used in non-object scope"; } //If we're in an object method, and our enclosing scope is that object, we're a member of the object and should use the this reference. if (enclosingObject && enclosingObject->getDataRef()->scope.find(data.symbol.getName()) != enclosingObject->getDataRef()->scope.end()) preName += "this->"; // dereference references, but only if inside a function and not if this is a closed over variable if (enclosingFunction && data.valueType->is_reference && !closed) { preName += "(*"; postName += ")"; } // we're scope prefixing EVERYTHING return preName + scopePrefix(from) + CifyName(data.symbol.getName()) + postName; //Cifying does nothing if not an operator overload } case function: { if (data.valueType->baseType == template_type) return "/* template function: " + data.symbol.getName() + " */"; // we push on a new vector to hold parameters that might need a destructor call distructDoubleStack.push_back(std::vector*>()); std::string nameDecoration, parameters; if (data.closedVariables.size()) parameters += closureStructType(data.closedVariables) + " *closed_variables"; for (int j = 0; j < children.size()-1; j++) { if (j > 0 || data.closedVariables.size()) parameters += ", "; parameters += ValueTypeToCType(children[j]->getData().valueType, generate(children[j], enclosingObject, justFuncName, enclosingFunction).oneString()); nameDecoration += "_" + ValueTypeToCTypeDecoration(children[j]->getData().valueType); // add parameters to distructDoubleStack so that their destructors will be called at return (if they exist) distructDoubleStack.back().push_back(children[j]); } // this is for using functions as values if (justFuncName) { std::string funcName; if (data.symbol.getName() != "main") funcName += function_header + scopePrefix(from); funcName += CifyName(data.symbol.getName() + nameDecoration); if (from->getDataRef()->closedVariables.size()) { std::string tmpStruct = "closureStruct" + getID(); output.preValue += closureStructType(data.closedVariables) + " " + tmpStruct + " = {"; bool notFirst = false; for (auto var : data.closedVariables) { if (notFirst) output.preValue += ", "; notFirst = true; std::string varName = var->getDataRef()->symbol.getName(); std::string preName; if (enclosingObject && enclosingObject->getDataRef()->scope.find(varName) != enclosingObject->getDataRef()->scope.end()) preName += "this->"; varName = (varName == "this") ? varName : scopePrefix(var) + varName; // so that we can close over things that have been closed over by an enclosing closure output.preValue += "." + varName + " = &/*woo*/" + generate(var, enclosingObject, justFuncName, enclosingFunction).oneString() + "/*woo*/"; //output.preValue += "." + varName + " = &" + preName + varName; } output.preValue += "};\n"; output += "("+ ValueTypeToCType(data.valueType, "") +"){(void*)" + funcName + ", &" + tmpStruct + "}"; } else { output += "("+ ValueTypeToCType(data.valueType, "") +"){" + funcName + ", NULL}"; } } else { // Note that we always wrap out child in {}, as we now allow one statement functions without a codeblock output = "\n" + ValueTypeToCType(data.valueType->returnType, ((data.symbol.getName() == "main") ? "" : function_header + scopePrefix(from)) + CifyName(data.symbol.getName() + nameDecoration)) + "(" + parameters + ") {\n" + generate(children[children.size()-1], enclosingObject, justFuncName, from).oneString(); output += emitDestructors(reverse(distructDoubleStack.back()), enclosingObject); output += "}\n"; } distructDoubleStack.pop_back(); return output; } case code_block: { output += "{\n"; tabLevel++; // we push on a new vector to hold parameters that might need a destructor call distructDoubleStack.push_back(std::vector*>()); // we push on a new vector to hold deferred statements deferDoubleStack.push_back(std::vector*>()); for (int i = 0; i < children.size(); i++) output += generate(children[i], enclosingObject, justFuncName, enclosingFunction).oneString(); // we pop off the vector and go through them in reverse emitting them for (auto iter = deferDoubleStack.back().rbegin(); iter != deferDoubleStack.back().rend(); iter++) output += generate(*iter, enclosingObject, justFuncName, enclosingFunction).oneString(); deferDoubleStack.pop_back(); output += emitDestructors(reverse(distructDoubleStack.back()), enclosingObject); distructDoubleStack.pop_back(); tabLevel--; output += tabs() + "}"; return output; } case expression: output += " " + data.symbol.getName() + ", "; case boolean_expression: output += " " + data.symbol.getName() + " "; case statement: { CCodeTriple stat = generate(children[0], enclosingObject, justFuncName, enclosingFunction); return tabs() + stat.preValue + stat.value + ";\n" + stat.postValue ; } case if_statement: output += "if (" + generate(children[0], enclosingObject, true, enclosingFunction) + ")\n\t"; // We have to see if the then statement is a regular single statement or a block. // If it's a block, because it's also a statement a semicolon will be emitted even though // we don't want it to be, as if (a) {b}; else {c}; is not legal C, but if (a) {b} else {c}; is. if (children[1]->getChildren()[0]->getDataRef()->type == code_block) { std::cout << "Then statement is a block, emitting the block not the statement so no trailing semicolon" << std::endl; output += generate(children[1]->getChildren()[0], enclosingObject, justFuncName, enclosingFunction).oneString(); } else { // ALSO we always emit blocks now, to handle cases like defer when several statements need to be // run in C even though it is a single Kraken statement std::cout << "Then statement is a simple statement, regular emitting the statement so trailing semicolon" << std::endl; output += "{ " + generate(children[1], enclosingObject, justFuncName, enclosingFunction).oneString() + " }"; } // Always emit blocks here too if (children.size() > 2) output += " else { " + generate(children[2], enclosingObject, justFuncName, enclosingFunction).oneString() + " }"; return output; case while_loop: { // we push on a new vector to hold while stuff that might need a destructor call loopDistructStackDepth.push(distructDoubleStack.size()); distructDoubleStack.push_back(std::vector*>()); // keep track of the current size of the deferDoubleStack so that statements that // break or continue inside this loop can correctly emit all of the defers through // all of the inbetween scopes loopDeferStackDepth.push(deferDoubleStack.size()); // gotta do like this so that the preconditions can happen every loop output += "while (1) {\n"; CCodeTriple condtition = generate(children[0], enclosingObject, true, enclosingFunction); output += condtition.preValue; output += "if (!( " + condtition.value + ")) break;\n"; output += condtition.postValue; output += generate(children[1], enclosingObject, justFuncName, enclosingFunction).oneString(); output += emitDestructors(reverse(distructDoubleStack.back()),enclosingObject); output += + "}"; distructDoubleStack.pop_back(); loopDistructStackDepth.pop(); // and pop it off again loopDeferStackDepth.pop(); return output; } case for_loop: { // we push on a new vector to hold for stuff that might need a destructor call loopDistructStackDepth.push(distructDoubleStack.size()); distructDoubleStack.push_back(std::vector*>()); // keep track of the current size of the deferDoubleStack so that statements that // break or continue inside this loop can correctly emit all of the defers through // all of the inbetween scopes loopDeferStackDepth.push(deferDoubleStack.size()); //The strSlice's are there to get ride of an unwanted return and an unwanted semicolon(s) std::string doUpdateName = "do_update" + getID(); // INITIALIZER output += "{"; output += generate(children[0], enclosingObject, true, enclosingFunction).oneString(); output += "bool " + doUpdateName + " = false;\n"; output += "for (;;) {"; // UPDATE output += "if (" + doUpdateName + ") {"; output += generate(children[2], enclosingObject, true, enclosingFunction).oneString(); output += "}\n"; output += doUpdateName + " = true;\n"; // CONDITION // note that the postValue happens whether or not we break CCodeTriple condition = generate(children[1], enclosingObject, true, enclosingFunction); output += condition.preValue; output += "if (!(" + condition.value + ")) {\n"; output += condition.postValue; output += "break;\n}"; output += condition.postValue; // BODY output += generate(children[3], enclosingObject, justFuncName, enclosingFunction).oneString(); output += emitDestructors(reverse(distructDoubleStack.back()),enclosingObject); output += "}"; output += "}"; distructDoubleStack.pop_back(); loopDistructStackDepth.pop(); // and pop it off again loopDeferStackDepth.pop(); return output; } case return_statement: { // we pop off the vector and go through them in reverse emitting them, going // through all of both arrays, as return will go through all scopes for (auto topItr = deferDoubleStack.rbegin(); topItr != deferDoubleStack.rend(); topItr++) for (auto iter = (*topItr).rbegin(); iter != (*topItr).rend(); iter++) output += generate(*iter, enclosingObject, justFuncName, enclosingFunction).oneString(); std::string destructors = emitDestructors(reverse(flatten(distructDoubleStack)),enclosingObject); if (children.size()) { CCodeTriple expr = generate(children[0], enclosingObject, true, enclosingFunction); output.preValue += expr.preValue; std::string retTemp = "ret_temp" + getID(); // use the function's return value so we do the right thing with references output.preValue += ValueTypeToCType(enclosingFunction->getDataRef()->valueType->returnType, retTemp) + ";\n"; if (enclosingFunction->getDataRef()->valueType->returnType->is_reference) output.preValue += retTemp + " = &" + expr.value + ";\n"; else if (methodExists(children[0]->getDataRef()->valueType, "copy_construct", std::vector{children[0]->getDataRef()->valueType->withIncreasedIndirection()})) output.preValue += generateMethodIfExists(children[0]->getDataRef()->valueType, "copy_construct", "&"+retTemp + ", &" + expr.value, std::vector{children[0]->getDataRef()->valueType->withIncreasedIndirection()}); else output.preValue += retTemp + " = " + expr.value + ";\n"; // move expr post to before return output.value += expr.postValue; output.value += destructors; output.value += "return " + retTemp; } else { output.value += destructors; output += "return"; } return output; } case break_statement: // handle everything that's been deferred all the way back to the loop's scope for (int i = deferDoubleStack.size()-1; i >= loopDeferStackDepth.top(); i--) for (auto iter = deferDoubleStack[i].rbegin(); iter != deferDoubleStack[i].rend(); iter++) output += generate(*iter, enclosingObject, justFuncName, enclosingFunction).oneString(); // ok, emit destructors to where the loop ends output += emitDestructors(reverse(flatten(slice(distructDoubleStack,loopDistructStackDepth.top(),-1))),enclosingObject); return output + "break"; case continue_statement: // handle everything that's been deferred all the way back to the loop's scope for (int i = deferDoubleStack.size()-1; i >= loopDeferStackDepth.top(); i--) for (auto iter = deferDoubleStack[i].rbegin(); iter != deferDoubleStack[i].rend(); iter++) output += generate(*iter, enclosingObject, justFuncName, enclosingFunction).oneString(); // ok, emit destructors to where the loop ends output += emitDestructors(reverse(flatten(slice(distructDoubleStack,loopDistructStackDepth.top(),-1))),enclosingObject); return output + "continue"; case defer_statement: deferDoubleStack.back().push_back(children[0]); return CCodeTriple("/*defer " + generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString() + "*/"); case assignment_statement: return generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString() + " = " + generate(children[1], enclosingObject, true, enclosingFunction); case declaration_statement: // adding declaration to the distructDoubleStack so that we can call their destructors when leaving scope (}, return, break, continue) // but only if we're inside an actual doublestack if ((distructDoubleStack.size())) distructDoubleStack.back().push_back(children[0]); if (children.size() == 1) return ValueTypeToCType(children[0]->getData().valueType, generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString()) + ";"; else if (children[1]->getChildren().size() && children[1]->getChildren()[0]->getChildren().size() > 1 && children[1]->getChildren()[0]->getChildren()[1] == children[0]) { //That is, if we're a declaration with an init position call (Object a.construct()) //We can tell if our function call (children[1])'s access operation([0])'s lhs ([1]) is the thing we just declared (children[0]) // be sure to end value by passing oneString true return ValueTypeToCType(children[0]->getData().valueType, generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString()) + "; " + generate(children[1], enclosingObject, true, enclosingFunction).oneString(true) + "/*Init Position Call*/"; } else { // copy constructor if exists (even for non same types) if (methodExists(children[0]->getDataRef()->valueType, "copy_construct", std::vector{children[1]->getDataRef()->valueType->withIncreasedIndirection()})) { CCodeTriple toAssign = generate(children[1], enclosingObject, true, enclosingFunction); std::string assignedTo = generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString(); output.value = toAssign.preValue; output.value += ValueTypeToCType(children[0]->getData().valueType, assignedTo) + ";\n"; // we put the thing about to be copy constructed in a variable so we can for sure take its address std::string toAssignTemp = "copy_construct_param" + getID(); output.value += ValueTypeToCType(children[1]->getData().valueType->withoutReference(), toAssignTemp) + " = " + toAssign.value + ";\n"; output.value += generateMethodIfExists(children[0]->getDataRef()->valueType, "copy_construct", "&" + assignedTo + ", &" + toAssignTemp, std::vector{children[1]->getDataRef()->valueType->withIncreasedIndirection()}) + ";\n" + output.postValue; output.value += toAssign.postValue; return output; } else { // we might use this address in the right hand side (recursive closures), so split it up std::string assignTo = generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString(); output.preValue = ValueTypeToCType(children[0]->getData().valueType, assignTo) + ";\n"; output += assignTo + " = " + generate(children[1], enclosingObject, true, enclosingFunction) + ";"; return output; } } case if_comp: // Lol, this doesn't work because the string gets prefixed now //if (generate(children[0], enclosingObject, enclosingFunction) == generatorString) if (children[0]->getDataRef()->symbol.getName() == generatorString) return generate(children[1], enclosingObject, justFuncName, enclosingFunction); return CCodeTriple(""); case simple_passthrough: { // Stuff is bit more interesting now! XXX std::string pre_passthrough, post_passthrough; // Handle input/output parameters if (children.front()->getDataRef()->type == passthrough_params) { auto optParamAssignLists = children.front()->getChildren(); for (auto in_or_out : optParamAssignLists) { for (auto assign : in_or_out->getChildren()) { auto assignChildren = assign->getChildren(); if (in_or_out->getDataRef()->type == in_passthrough_params) if (assignChildren.size() == 2) pre_passthrough += ValueTypeToCType(assignChildren[0]->getDataRef()->valueType, assignChildren[1]->getDataRef()->symbol.getName()) + " = " + generate(assignChildren[0], enclosingObject, enclosingFunction).oneString() + ";\n"; else pre_passthrough += ValueTypeToCType(assignChildren[0]->getDataRef()->valueType, assignChildren[0]->getDataRef()->symbol.getName()) + " = " + generate(assignChildren[0], enclosingObject, enclosingFunction).oneString() + ";\n"; else if (in_or_out->getDataRef()->type == out_passthrough_params) if (assignChildren.size() == 2) post_passthrough += generate(assignChildren[0], enclosingObject, justFuncName, enclosingFunction).oneString() + " = " + assignChildren[1]->getDataRef()->symbol.getName() + ";\n"; else post_passthrough += generate(assignChildren[0], enclosingObject, justFuncName, enclosingFunction).oneString() + " = " + assignChildren[0]->getDataRef()->symbol.getName() + ";\n"; else linkerString += " " + strSlice(generate(in_or_out, enclosingObject, justFuncName, enclosingFunction).oneString(), 1, -2) + " "; } } } // The actual passthrough string is the last child now, as we might // have passthrough_params be the first child // we don't generate, as that will escape the returns and we don't want that. We'll just grab the string //return pre_passthrough + strSlice(generate(children.back(, enclosingFunction), enclosingObject, justFuncName).oneString(), 3, -4) + post_passthrough; return pre_passthrough + strSlice(children.back()->getDataRef()->symbol.getName(), 3, -4) + post_passthrough; } case function_call: { //NOTE: The first (0th) child of a function call node is the declaration of the function //Handle operators specially for now. Will later replace with //Inlined functions in the standard library // std::string name = data.symbol.getName(); // std::cout << name << " == " << children[0]->getData().symbol.getName() << std::endl; std::string name = children[0]->getDataRef()->symbol.getName(); ASTType funcType = children[0]->getDataRef()->type; // UGLLLLYYYY // But we have these here because some stuff has to be moved out of the giant nested blocks below and this is the way to do it CCodeTriple functionCallSource; bool doClosureInstead = false; //std::cout << "Doing function: " << name << std::endl; //Test for special functions only if what we're testing is, indeed, the definition, not a function call that returns a callable function pointer if (funcType == function) { if (name == "++" || name == "--") return generate(children[1], enclosingObject, true, enclosingFunction) + name; if ( (name == "*" || name == "&" || name == "!" || name == "-" || name == "+" ) && children.size() == 2) //Is dereference, not multiplication, address-of, or other unary operator return name + "(" + generate(children[1], enclosingObject, true, enclosingFunction) + ")"; if (name == "[]") return "(" + generate(children[1], enclosingObject, true, enclosingFunction) + ")[" + generate(children[2],enclosingObject, true, enclosingFunction) + "]"; if (name == "+" || name == "-" || name == "*" || name == "/" || name == "==" || name == ">=" || name == "<=" || name == "!=" || name == "<" || name == ">" || name == "%" || name == "=" || name == "+=" || name == "-=" || name == "*=" || name == "/=") { return "((" + generate(children[1], enclosingObject, true, enclosingFunction) + ")" + name + "(" + generate(children[2], enclosingObject, true, enclosingFunction) + "))"; } else if (name == "&&" || name == "||") { // b/c short circuiting, these have to be done seperately CCodeTriple lhs = generate(children[1], enclosingObject, true, enclosingFunction); CCodeTriple rhs = generate(children[2], enclosingObject, true, enclosingFunction); output.preValue = lhs.preValue; std::string shortcircuit_result = "shortcircuit_result" + getID(); output.preValue += "bool " + shortcircuit_result + " = " + lhs.value + ";\n"; output.preValue += lhs.postValue; output.preValue += "if (" + std::string(name == "||" ? "!":"") + shortcircuit_result + ") { \n"; output.preValue += rhs.preValue; output.preValue += shortcircuit_result + " = " + rhs.value + ";\n"; output.preValue += rhs.postValue; output.preValue += "}\n"; output.value = shortcircuit_result; return output; } else if (name == "." || name == "->") { if (children.size() == 1) return "/*dot operation with one child*/" + generate(children[0], enclosingObject, true, enclosingFunction).oneString() + "/*end one child*/"; //If this is accessing an actual function, find the function in scope and take the appropriate action. Probabally an object method if (children[2]->getDataRef()->type == function) { std::string functionName = children[2]->getDataRef()->symbol.getName(); NodeTree* possibleObjectType = children[1]->getDataRef()->valueType->typeDefinition; //If is an object method, generate it like one. Needs extension/modification for inheritence if (possibleObjectType) { NodeTree* unaliasedTypeDef = getMethodsObjectType(possibleObjectType, functionName); if (unaliasedTypeDef) { //Test to see if the function's a member of this type_def, or if this is an alias, of the original type. Get this original type if it exists. std::string nameDecoration; std::vector*> functionDefChildren = children[2]->getChildren(); //The function def is the rhs of the access operation //std::cout << "Decorating (in access-should be object) " << name << " " << functionDefChildren.size() << std::endl; for (int i = 0; i < (functionDefChildren.size() > 0 ? functionDefChildren.size()-1 : 0); i++) nameDecoration += "_" + ValueTypeToCTypeDecoration(functionDefChildren[i]->getData().valueType); // Note that we only add scoping to the object, as this specifies our member function too /*HERE*/ return function_header + scopePrefix(unaliasedTypeDef) + CifyName(unaliasedTypeDef->getDataRef()->symbol.getName()) +"__" + CifyName(functionName + nameDecoration) + "(" + (name == "." ? "&" : "") + generate(children[1], enclosingObject, true, enclosingFunction) + ","; //The comma lets the upper function call know we already started the param list //Note that we got here from a function call. We just pass up this special case and let them finish with the perentheses } else { std::cout << "Is not in scope or not type" << std::endl; return "((" + generate(children[1], enclosingObject, true, enclosingFunction) + ")" + name + functionName + ")"; } } else { std::cout << "Is not in scope or not type" << std::endl; return "((" + generate(children[1], enclosingObject, true, enclosingFunction) + ")" + name + functionName + ")"; } } else { //return "((" + generate(children[1], enclosingObject, enclosingFunction) + ")" + name + generate(children[2], enclosingObject, enclosingFunction) + ")"; return "((" + generate(children[1], enclosingObject, true, enclosingFunction) + ")" + name + generate(children[2], nullptr, true, enclosingFunction) + ")"; } } else { // this could a closure literal. sigh, I know. if (children[0]->getDataRef()->closedVariables.size()) { functionCallSource = generate(children[0], enclosingObject, true, enclosingFunction); doClosureInstead = true; } else { //It's a normal function call, not a special one or a method or anything. Name decorate. std::vector*> functionDefChildren = children[0]->getChildren(); //std::cout << "Decorating (none-special)" << name << " " << functionDefChildren.size() << std::endl; std::string nameDecoration; for (int i = 0; i < (functionDefChildren.size() > 0 ? functionDefChildren.size()-1 : 0); i++) nameDecoration += "_" + ValueTypeToCTypeDecoration(functionDefChildren[i]->getData().valueType); // it is possible that this is an object method from inside a closure // in which case, recover the enclosing object from this bool addClosedOver = false; if (enclosingFunction && enclosingFunction->getDataRef()->closedVariables.size()) { for (auto closedVar : enclosingFunction->getDataRef()->closedVariables) { if (closedVar->getDataRef()->symbol.getName() == "this") { enclosingObject = closedVar->getDataRef()->valueType->typeDefinition; addClosedOver = true; } } } //Check to see if we're inside of an object and this is a method call bool isSelfObjectMethod = enclosingObject && contains(enclosingObject->getChildren(), children[0]); if (isSelfObjectMethod) { output += function_header + scopePrefix(children[0]) + CifyName(enclosingObject->getDataRef()->symbol.getName()) +"__"; output += CifyName(name + nameDecoration) + "("; output += std::string(addClosedOver ? "(*closed_variables->this)" : "this") + (children.size() > 1 ? "," : ""); } else { output += function_header + scopePrefix(children[0]) + CifyName(name + nameDecoration) + "("; } } } } else { //This part handles cases where our definition isn't the function definition (that is, it is probabally the return from another function) //It's probabally the result of an access function call (. or ->) to access an object method. //OR a function value! // //THIS IS UUUUUGLLYYY too. We moved the closure part out to after the generation of the params becuase it needs to use them twice functionCallSource = generate(children[0], enclosingObject, true, enclosingFunction); if (functionCallSource.value[functionCallSource.value.size()-1] == ',') //If it's a member method, it's already started the parameter list. output += children.size() > 1 ? functionCallSource : CCodeTriple(functionCallSource.preValue, functionCallSource.value.substr(0, functionCallSource.value.size()-1), functionCallSource.postValue); else { doClosureInstead = true; } } CCodeTriple parameters; // see if we should copy_construct / referencize all the parameters for (int i = 1; i < children.size(); i++) { //children[0] is the declaration Type* func_param_type = children[0]->getDataRef()->valueType->parameterTypes[i-1]; // ok, if our param is a reference returned by another function, we don't actually want this type to be a reference if it is now. Type *param_type = children[i]->getDataRef()->valueType->withoutReference(); // don't copy_construct references if (func_param_type->is_reference) { parameters += "&" + generate(children[i], enclosingObject, true, enclosingFunction); } else if (methodExists(children[i]->getDataRef()->valueType, "copy_construct", std::vector{param_type->withIncreasedIndirection()})) { std::string tmpParamName = "param" + getID(); CCodeTriple paramValue = generate(children[i], enclosingObject, true, enclosingFunction); parameters.preValue += paramValue.preValue; parameters.preValue += ValueTypeToCType(param_type, tmpParamName) + ";\n"; parameters.preValue += generateMethodIfExists(param_type, "copy_construct", "&"+tmpParamName + ", &" + paramValue.value, std::vector{children[i]->getDataRef()->valueType->withIncreasedIndirection()}); parameters.value += tmpParamName; parameters.postValue += paramValue.postValue; } else { parameters += generate(children[i], enclosingObject, true, enclosingFunction); } if (i < children.size()-1) parameters += ", "; } if (doClosureInstead) { Type* funcType = children[0]->getDataRef()->valueType; Type* retType = funcType->returnType; bool doRet = retType->baseType != void_type || retType->getIndirection(); std::string tmpName = "functionValueTmp" + getID(); std::string retTmpName = "closureRetTemp" + getID(); output += CCodeTriple(parameters.preValue + functionCallSource.preValue + ValueTypeToCType(funcType, tmpName) + " = " + functionCallSource.value + ";\n" + (doRet ? ValueTypeToCType(retType, retTmpName) + ";\n" : "") + "if (" + tmpName + ".data) { " + (doRet ? (retTmpName + " =") : "") + " (("+ ValueTypeToCTypeDecoration(funcType,ClosureFunctionPointerTypeWithClosedParam) +") (" + tmpName + ".func))(" + tmpName + ".data" + (children.size() > 1 ? ", " : "") + parameters.value + "); }\n" + "else { " + (doRet ? (retTmpName + " = ") : "") + " (("+ ValueTypeToCTypeDecoration(funcType,ClosureFunctionPointerTypeWithoutClosedParam) +") (" + tmpName + ".func))(" + parameters.value + "); }\n", (doRet ? retTmpName : ""), parameters.postValue + functionCallSource.postValue); } else { output += parameters + ") "; } // see if we should add a destructer call to this postValue Type* retType = children[0]->getDataRef()->valueType->returnType; if (retType->baseType != void_type) { // we always use return temps now :( (for psudo-pod objects that still have methods called on them, like range(1,3).for_each(...) std::string retTempName = "return_temp" + getID(); output.preValue += ValueTypeToCType(retType, retTempName) + " = " + output.value + ";\n"; output.value = retTempName; if (retType->is_reference) output.value = "(*" + output.value + ")"; else if (methodExists(retType, "destruct", std::vector())) { output.postValue = generateMethodIfExists(retType, "destruct", "&"+retTempName, std::vector()) + ";\n" + output.postValue; } } return output; } case value: { // ok, we now check for it being a string and escape all returns if it is (so that multiline strings work) if (data.symbol.getName()[0] == '"') { std::string innerString = strSlice(data.symbol.getName(), 0, 3) == "\"\"\"" ? strSlice(data.symbol.getName(), 3, -4) : strSlice(data.symbol.getName(), 1, -2); std::string newStr; for (auto character: innerString) if (character == '\n') newStr += "\\n"; else if (character == '"') newStr += "\\\""; else newStr += character; return "\"" + newStr + "\""; } return data.symbol.getName(); } default: std::cout << "Nothing!" << std::endl; } for (int i = 0; i < children.size(); i++) output += generate(children[i], enclosingObject, justFuncName, enclosingFunction).oneString(); return output; } NodeTree* CGenerator::getMethodsObjectType(NodeTree* scope, std::string functionName) { //check the thing while (scope != scope->getDataRef()->valueType->typeDefinition) //type is an alias, follow it to the definition scope = scope->getDataRef()->valueType->typeDefinition; return (scope->getDataRef()->scope.find(functionName) != scope->getDataRef()->scope.end()) ? scope : NULL; } // Returns the function prototype in the out param and the full definition normally std::string CGenerator::generateObjectMethod(NodeTree* enclosingObject, NodeTree* from, std::string *functionPrototype) { distructDoubleStack.push_back(std::vector*>()); ASTData data = from->getData(); Type enclosingObjectType = *(enclosingObject->getDataRef()->valueType); //Copy a new type so we can turn it into a pointer if we need to enclosingObjectType.increaseIndirection(); std::vector*> children = from->getChildren(); std::string nameDecoration, parameters; if (!children.size()) { //problem std::cerr << " no children " << std::endl; } for (int i = 0; i < children.size()-1; i++) { parameters += ", " + ValueTypeToCType(children[i]->getData().valueType, generate(children[i]).oneString()); nameDecoration += "_" + ValueTypeToCTypeDecoration(children[i]->getData().valueType); distructDoubleStack.back().push_back(children[i]); } std::string functionSignature = "\n" + ValueTypeToCType(data.valueType->returnType, function_header + scopePrefix(from) + CifyName(enclosingObject->getDataRef()->symbol.getName()) +"__" + CifyName(data.symbol.getName()) + nameDecoration) + "(" + ValueTypeToCType(&enclosingObjectType, "this") + parameters + ")"; *functionPrototype += functionSignature + ";\n"; // Note that we always wrap out child in {}, as we now allow one statement functions without a codeblock // std::string output; output += functionSignature + " {\n" + generate(children.back(), enclosingObject, false, from).oneString(); output += emitDestructors(reverse(distructDoubleStack.back()), enclosingObject); output += "}\n"; //Pass in the object so we can properly handle access to member stuff distructDoubleStack.pop_back(); return output; } NodeTree* CGenerator::getMethod(Type* type, std::string method, std::vector types) { if (type->getIndirection()) return nullptr; NodeTree *typeDefinition = type->typeDefinition; if (typeDefinition) { auto definitionItr = typeDefinition->getDataRef()->scope.find(method); if (definitionItr != typeDefinition->getDataRef()->scope.end()) { for (auto method : definitionItr->second) { bool methodFits = true; std::vector methodTypes = dereferenced(method->getDataRef()->valueType->parameterTypes); if (types.size() != methodTypes.size()) continue; for (int i = 0; i < types.size(); i++) { // don't care about references if (!types[i].test_equality(methodTypes[i], false)) { methodFits = false; break; } } if (methodFits) return method; } } } return nullptr; } bool CGenerator::methodExists(Type* type, std::string method, std::vector types) { return getMethod(type, method, types) != nullptr; } std::string CGenerator::generateMethodIfExists(Type* type, std::string method, std::string parameter, std::vector methodTypes) { NodeTree *methodDef = getMethod(type, method, methodTypes); if (methodDef) { NodeTree *typeDefinition = type->typeDefinition; std::string nameDecoration; for (Type *paramType : methodDef->getDataRef()->valueType->parameterTypes) nameDecoration += "_" + ValueTypeToCTypeDecoration(paramType); return function_header + scopePrefix(typeDefinition) + CifyName(typeDefinition->getDataRef()->symbol.getName()) + "__" + method + nameDecoration + "(" + parameter + ");\n"; } return ""; } std::string CGenerator::emitDestructors(std::vector*> identifiers, NodeTree* enclosingObject) { std::string destructorString = ""; for (auto identifier : identifiers) if (!identifier->getDataRef()->valueType->is_reference) destructorString += tabs() + generateMethodIfExists(identifier->getDataRef()->valueType, "destruct", "&" + generate(identifier, enclosingObject).oneString(), std::vector()); return destructorString; } std::string CGenerator::closureStructType(std::set*> closedVariables) { auto it = closureStructMap.find(closedVariables); if (it != closureStructMap.end()) return it->second; std::string typedefString = "typedef struct { "; // note the increased indirection b/c we're using references to what we closed over for (auto var : closedVariables) { // unfortunatly we can't just do it with increased indirection b/c closing over function values // will actually change the underlying function's type. We cheat and just add a * //auto tmp = var->getDataRef()->valueType->withIncreasedIndirection(); std::string varName = var->getDataRef()->symbol.getName(); varName = (varName == "this") ? varName : scopePrefix(var) + varName; typedefString += ValueTypeToCType(var->getDataRef()->valueType->withoutReference(), "*"+varName) + ";"; } std::string structName = "closureStructType" + getID(); typedefString += " } " + structName + ";\n"; functionTypedefString += typedefString; closureStructMap[closedVariables] = structName; return structName; } std::string CGenerator::ValueTypeToCType(Type *type, std::string declaration, ClosureTypeSpecialType closureSpecial) { return ValueTypeToCTypeThingHelper(type, " " + declaration, closureSpecial); } std::string CGenerator::ValueTypeToCTypeDecoration(Type *type, ClosureTypeSpecialType closureSpecial) { return CifyName(ValueTypeToCTypeThingHelper(type, "", closureSpecial)); } std::string CGenerator::ValueTypeToCTypeThingHelper(Type *type, std::string declaration, ClosureTypeSpecialType closureSpecial) { std::string return_type; bool do_ending = true; switch (type->baseType) { case none: if (type->typeDefinition) return_type = scopePrefix(type->typeDefinition) + CifyName(type->typeDefinition->getDataRef()->symbol.getName()); else return_type = "none"; break; case function_type: { std::string indr_str; for (int i = 0; i < type->getIndirection(); i++) indr_str += "*"; auto it = functionTypedefMap.find(*type); if (it != functionTypedefMap.end()) { if (closureSpecial == ClosureFunctionPointerTypeWithClosedParam) return_type = it->second.second + declaration; else if (closureSpecial == ClosureFunctionPointerTypeWithoutClosedParam) return_type = it->second.third + declaration; else return_type = it->second.first + declaration; } else { std::string typedefWithoutVoidStr = "typedef "; std::string typedefWithVoidStr = "typedef "; std::string typedefWithoutVoidID = "ID_novoid_" + CifyName(type->toString(false)); std::string typedefWithVoidID = "ID_withvoid_" + CifyName(type->toString(false)); std::string typedefStructID = "ID_struct_" + CifyName(type->toString(false)); // How I wish the world were this kind. Because of C name resolution not looking ahead, this definition needs to be BEFORE // the object definitions. So to prevent circular dependencies, I'm making this take in a void pointer and we'll simply // cast in both cases, whether or not there's a data pointer. Sigh. //std::string typedefStructStr = "typedef struct {" + typedefWithoutVoidID + " func; void* val; } " + typedefStructID + ";\n"; std::string typedefStructStr = "typedef struct { void* func; void* data; } " + typedefStructID + ";\n"; typedefWithoutVoidStr += ValueTypeToCTypeThingHelper(type->returnType, "", closureSpecial); typedefWithVoidStr += ValueTypeToCTypeThingHelper(type->returnType, "", closureSpecial); typedefWithoutVoidStr += " (*" + typedefWithoutVoidID + ")("; typedefWithVoidStr += " (*" + typedefWithVoidID + ")("; typedefWithVoidStr += "void*"; if (type->parameterTypes.size() == 0) typedefWithoutVoidStr += "void"; else for (int i = 0; i < type->parameterTypes.size(); i++) { typedefWithoutVoidStr += (i != 0 ? ", " : "") + ValueTypeToCTypeThingHelper(type->parameterTypes[i], "", closureSpecial); typedefWithVoidStr += ", " + ValueTypeToCTypeThingHelper(type->parameterTypes[i], "", closureSpecial); } typedefWithoutVoidStr += ");\n"; typedefWithVoidStr += ");\n"; // again, sigh functionTypedefString += typedefWithoutVoidStr; functionTypedefString += typedefWithVoidStr; functionTypedefStringPre += typedefStructStr; //functionTypedefString += typedefStructStr; if (closureSpecial == ClosureFunctionPointerTypeWithClosedParam) return_type = typedefWithVoidID + indr_str + declaration; else return_type = typedefStructID + indr_str + declaration; functionTypedefMap[*type] = make_triple(typedefStructID, typedefWithVoidID, typedefWithoutVoidID); } do_ending = false; } break; case void_type: return_type = "void"; break; case boolean: return_type = "bool"; break; case integer: return_type = "int"; break; case floating: return_type = "float"; break; case double_percision: return_type = "double"; break; case character: return_type = "char"; break; default: return_type = "unknown_ValueType"; break; } if (!do_ending) return return_type; for (int i = 0; i < type->getIndirection(); i++) return_type += "*"; if (type->is_reference) return_type += " /*ref*/ *"; return return_type + declaration; } std::string CGenerator::CifyName(std::string name) { std::string operatorsToReplace[] = { "+", "plus", "-", "minus", "*", "star", "/", "div", "%", "mod", "^", "carat", "&", "amprsd", "|", "pipe", "~", "tilde", "!", "exlmtnpt", ",", "comma", "=", "eq", "++", "dbplus", "--", "dbminus", "<<", "dbleft", ">>", "dbright", "::", "scopeop", ":", "colon", "==", "dbq", "!=", "notequals", "&&", "doubleamprsnd", "||", "doublepipe", "+=", "plusequals", "-=", "minusequals", "/=", "divequals", "%=", "modequals", "^=", "caratequals", "&=", "amprsdequals", "|=", "pipeequals", "*=", "starequals", "<<=", "doublerightequals", "<", "lt", ">", "gt", ">>=", "doubleleftequals", "(", "openparen", ")", "closeparen", "[", "obk", "]", "cbk", " ", "space", ".", "dot", "->", "arrow" }; int length = sizeof(operatorsToReplace)/sizeof(std::string); //std::cout << "Length is " << length << std::endl; for (int i = 0; i < length; i+= 2) { size_t foundPos = name.find(operatorsToReplace[i]); while(foundPos != std::string::npos) { name = strSlice(name, 0, foundPos) + "_" + operatorsToReplace[i+1] + "_" + strSlice(name, foundPos+operatorsToReplace[i].length(), -1); foundPos = name.find(operatorsToReplace[i]); } } return name; } // Generate the scope prefix, that is "file_class_" for a method, etc // What do we still need to handle? Packages! But we don't have thoes yet.... std::string CGenerator::scopePrefix(NodeTree* from) { //return ""; std::string suffix = "_scp_"; ASTData data = from->getData(); if (data.type == translation_unit) return CifyName(data.symbol.getName()) + suffix; // so we do prefixing for stuff that c doesn't already scope: // different files. That's it for now. Methods are already lowered correctly with their parent object, // that parent object will get scoped. When we add a package system, we'll have to then add their scoping here return scopePrefix(from->getDataRef()->scope["~enclosing_scope"][0]); }