Files
kraken/src/CGenerator.cpp
2015-03-14 02:42:07 -04:00

573 lines
31 KiB
C++

#include "CGenerator.h"
CGenerator::CGenerator() : generatorString("__C__") {
tabLevel = 0;
}
CGenerator::~CGenerator() {
}
// Note the use of std::pair to hold two strings - the running string for the header file and the running string for the c file.
void CGenerator::generateCompSet(std::map<std::string, NodeTree<ASTData>*> ASTs, std::string outputName) {
//Generate an entire set of files
std::string buildString = "#!/bin/sh\ncc -std=c99 ";
std::cout << "\n\n =====GENERATE PASS===== \n\n" << std::endl;
if (mkdir(("./" + outputName).c_str(), 0755)) {
std::cerr << "\n\n =====GENERATE PASS===== \n\n" << std::endl;
std::cerr << "Could not make directory " << outputName << std::endl;
//throw "could not make directory ";
}
std::cout << "\n\nGenerate pass for: " << outputName << std::endl;
buildString += outputName + ".c ";
std::ofstream outputCFile, outputHFile;
outputCFile.open(outputName + "/" + outputName + ".c");
outputHFile.open(outputName + "/" + outputName + ".h");
if (outputCFile.is_open() || outputHFile.is_open()) {
// Prequel common to all files
auto chPair = generateTranslationUnit(outputName, ASTs);
outputHFile << "#include <stdbool.h>\n#include <stdlib.h>\n#include <stdio.h>\n" << chPair.first;
outputCFile << "#include \"" + outputName + ".h\"\n\n" << chPair.second;
} else {
std::cerr << "Cannot open file " << outputName << ".c/h" << std::endl;
}
outputCFile.close();
outputHFile.close();
buildString += "-o " + outputName;
std::ofstream outputBuild;
outputBuild.open(outputName + "/" + split(outputName, '/').back() + ".sh");
outputBuild << buildString;
outputBuild.close();
}
std::string CGenerator::tabs() {
std::string returnTabs;
for (int i = 0; i < tabLevel; i++)
returnTabs += "\t";
return returnTabs;
}
std::string CGenerator::generateClassStruct(NodeTree<ASTData>* from) {
auto data = from->getData();
auto children = from->getChildren();
std::string objectString = "struct __struct_dummy_" + CifyName(data.symbol.getName()) + "__ {\n";
tabLevel++;
for (int i = 0; i < children.size(); i++) {
std::cout << children[i]->getName() << std::endl;
if (children[i]->getName() != "function")
objectString += tabs() + generate(children[i], nullptr) + "\n";
}
tabLevel--;
objectString += "};";
return objectString;
}
// This method recurseivly generates all aliases of some definition
std::string CGenerator::generateAliasChains(std::map<std::string, NodeTree<ASTData>*> ASTs, NodeTree<ASTData>* definition) {
std::string output;
for (auto trans : ASTs) {
for (auto i = trans.second->getDataRef()->scope.begin(); i != trans.second->getDataRef()->scope.end(); i++) {
for (auto declaration : i->second) {
auto declarationData = declaration->getDataRef();
if (declarationData->type == type_def
&& declarationData->valueType->typeDefinition != declaration
&& declarationData->valueType->typeDefinition == definition) {
output += "typedef " + CifyName(definition->getDataRef()->symbol.getName()) + " " + CifyName(declarationData->symbol.getName()) + ";\n";
// Recursively add the ones that depend on this one
output += generateAliasChains(ASTs, declaration);
}
}
}
}
return output;
}
bool CGenerator::isUnderTranslationUnit(NodeTree<ASTData>* from, NodeTree<ASTData>* node) {
auto scope = from->getDataRef()->scope;
for (auto i : scope)
for (auto j : i.second)
if (j == node)
return true;
auto upper = scope.find("~enclosing_scope");
if (upper != scope.end())
return isUnderTranslationUnit(upper->second[0], node);
return false;
}
NodeTree<ASTData>* CGenerator::highestScope(NodeTree<ASTData>* node) {
auto it = node->getDataRef()->scope.find("~enclosing_scope");
while (it != node->getDataRef()->scope.end()) {
node = it->second[0];
it = node->getDataRef()->scope.find("~enclosing_scope");
}
return node;
}
// We do translation units in their own function so they can do the pariwise h/c stuff and regualr in function body generation does not
std::pair<std::string, std::string> CGenerator::generateTranslationUnit(std::string name, std::map<std::string, NodeTree<ASTData>*> ASTs) {
// We now pass in the entire map of ASTs and loop through them so that we generate out into a single file
std::string cOutput, hOutput;
// Ok, so we've got to do this in passes to preserve mututally recursive definitions.
//
// First Pass: All classes get "struct dummy_thing; typedef struct dummy_thing thing;".
// Also, other typedefs follow after their naming.
// Second Pass: All top level variable declarations
// Third Pass: Define all actual structs of a class, in correct order (done with posets)
// Fourth Pass: Declare all function prototypes (as functions may be mutually recursive too).
// (this includes object methods)
// Fifth Pass: Define all functions (including object methods).
// However, most of these do not actually have to be done as separate passes. First, second, fourth, and fifth
// are done simultanously, but append to different strings that are then concatinated properly, in order.
std::string importIncludes = "/**\n * Import Includes\n */\n\n";
std::string variableExternDeclarations = "/**\n * Extern Variable Declarations \n */\n\n";
std::string plainTypedefs = "/**\n * Plain Typedefs\n */\n\n";
std::string variableDeclarations = "/**\n * Variable Declarations \n */\n\n";
std::string classStructs = "/**\n * Class Structs\n */\n\n";
std::string functionPrototypes = "/**\n * Function Prototypes\n */\n\n";
std::string functionDefinitions = "/**\n * Function Definitions\n */\n\n";
// And get the correct order for emiting classes, but not if they're not in our file, then they will get included
// Note that this is not sufsticated enough for some multiple file mutually recursive types, but I want to get this simple version working first
Poset<NodeTree<ASTData>*> typedefPoset;
for (auto trans : ASTs) {
auto children = trans.second->getChildren();
for (int i = 0; i < children.size(); i++) {
if (children[i]->getDataRef()->type == type_def) {
// If we're an alias type, continue. We handle those differently
if (children[i]->getDataRef()->valueType->typeDefinition != children[i])
continue;
typedefPoset.addVertex(children[i]); // We add this definition by itself just in case there are no dependencies.
// If it has dependencies, there's no harm in adding it here
// Go through every child in the class looking for declaration statements. For each of these that is not a primitive type
// we will add a dependency from this definition to that definition in the poset.
std::vector<NodeTree<ASTData>*> classChildren = children[i]->getChildren();
for (auto j : classChildren) {
if (j->getDataRef()->type == declaration_statement) {
Type* decType = j->getChildren()[0]->getDataRef()->valueType; // Type of the declaration
if (decType->typeDefinition && decType->getIndirection() == 0) // If this is a custom type and not a pointer
typedefPoset.addRelationship(children[i], decType->typeDefinition); // Add a dependency
}
}
}
}
}
//Now generate the typedef's in the correct, topological order
for (NodeTree<ASTData>* i : typedefPoset.getTopoSort())
classStructs += generateClassStruct(i) + "\n";
// Declare everything in translation unit scope here (now for ALL translation units). (allows stuff from other files, automatic forward declarations)
// Also, everything in all of the import's scopes
for (auto trans : ASTs) {
for (auto i = trans.second->getDataRef()->scope.begin(); i != trans.second->getDataRef()->scope.end(); i++) {
for (auto declaration : i->second) {
std::vector<NodeTree<ASTData>*> decChildren = declaration->getChildren();
ASTData declarationData = declaration->getData();
switch(declarationData.type) {
case identifier:
variableDeclarations += ValueTypeToCType(declarationData.valueType) + " " + declarationData.symbol.getName() + "; /*identifier*/\n";
variableExternDeclarations += "extern " + ValueTypeToCType(declarationData.valueType) + " " + declarationData.symbol.getName() + "; /*extern identifier*/\n";
break;
case function:
{
if (declarationData.valueType->baseType == template_type)
functionPrototypes += "/* template function " + declarationData.symbol.toString() + " */\n";
else if (decChildren.size() == 0) //Not a real function, must be a built in passthrough
functionPrototypes += "/* built in function: " + declarationData.symbol.toString() + " */\n";
else {
functionPrototypes += "\n" + ValueTypeToCType(declarationData.valueType) + " ";
std::string nameDecoration, parameters;
for (int j = 0; j < decChildren.size()-1; j++) {
if (j > 0)
parameters += ", ";
parameters += ValueTypeToCType(decChildren[j]->getData().valueType) + " " + generate(decChildren[j], nullptr);
nameDecoration += "_" + ValueTypeToCTypeDecoration(decChildren[j]->getData().valueType);
}
functionPrototypes += CifyName(declarationData.symbol.getName() + nameDecoration) + "(" + parameters + "); /*func*/\n";
// generate function
std::cout << "Generating " << CifyName(declarationData.symbol.getName()) << std::endl;
functionDefinitions += generate(declaration, nullptr);
}
}
break;
case type_def:
//type
plainTypedefs += "/*typedef " + declarationData.symbol.getName() + " */\n";
if (declarationData.valueType->baseType == template_type) {
plainTypedefs += "/* non instantiated template " + declarationData.symbol.getName() + " */";
} else if (declarationData.valueType->typeDefinition != declaration) {
if (declarationData.valueType->typeDefinition)
continue; // Aliases of objects are done with the thing it alises
// Otherwise, we're actually a renaming of a primitive, can generate here
plainTypedefs += "typedef " + ValueTypeToCType(declarationData.valueType) + " " + CifyName(declarationData.symbol.getName()) + ";\n";
plainTypedefs += generateAliasChains(ASTs, declaration);
} else {
plainTypedefs += "typedef struct __struct_dummy_" + CifyName(declarationData.symbol.getName()) + "__ " + CifyName(declarationData.symbol.getName()) + ";\n";
functionPrototypes += "/* Method Prototypes for " + declarationData.symbol.getName() + " */\n";
// We use a seperate string for this because we only include it if this is the file we're defined in
std::string objectFunctionDefinitions = "/* Method Definitions for " + declarationData.symbol.getName() + " */\n";
for (int j = 0; j < decChildren.size(); j++) {
std::cout << decChildren[j]->getName() << std::endl;
if (decChildren[j]->getName() == "function") //If object method
objectFunctionDefinitions += generateObjectMethod(declaration, decChildren[j], &functionPrototypes) + "\n";
}
// Add all aliases to the plain typedefs. This will add any alias that aliases to this object, and any alias that aliases to that, and so on
plainTypedefs += generateAliasChains(ASTs, declaration);
functionPrototypes += "/* Done with " + declarationData.symbol.getName() + " */\n";
// include methods
functionDefinitions += objectFunctionDefinitions + "/* Done with " + declarationData.symbol.getName() + " */\n";
}
break;
default:
//std::cout << "Declaration? named " << declaration->getName() << " of unknown type " << ASTData::ASTTypeToString(declarationData.type) << " in translation unit scope" << std::endl;
cOutput += "/*unknown declaration named " + declaration->getName() + "*/\n";
hOutput += "/*unknown declaration named " + declaration->getName() + "*/\n";
}
}
}
}
hOutput += plainTypedefs + importIncludes + variableExternDeclarations + classStructs + functionPrototypes;
cOutput += variableDeclarations + functionDefinitions;
return std::make_pair(hOutput, cOutput);
}
//The enclosing object is for when we're generating the inside of object methods. They allow us to check scope lookups against the object we're in
std::string CGenerator::generate(NodeTree<ASTData>* from, NodeTree<ASTData>* enclosingObject) {
ASTData data = from->getData();
std::vector<NodeTree<ASTData>*> children = from->getChildren();
std::string output;
switch (data.type) {
case translation_unit:
{
// Should not happen! We do this in it's own function now!
std::cerr << "Trying to normal generate a translation unit! That's a nono! (" << from->getDataRef()->toString() << ")" << std::endl;
throw "That's not gonna work";
}
break;
case interpreter_directive:
//Do nothing
break;
case import:
return "/* never reached import? */\n";
//return "include \"" + data.symbol.getName() + ".h\" //woo importing!\n";
//return "#include <" + data.symbol.getName() + ">\n";
case identifier:
{
//but first, if we're this, we should just emit. (assuming enclosing object) (note that technically this would fall through, but for errors)
if (data.symbol.getName() == "this") {
if (enclosingObject)
return "this";
else
std::cerr << "Error: this used in non-object scope" << std::endl;
}
//If we're in an object method, and our enclosing scope is that object, we're a member of the object and should use the this reference.
std::string preName;
if (enclosingObject && enclosingObject->getDataRef()->scope.find(data.symbol.getName()) != enclosingObject->getDataRef()->scope.end())
preName += "this->";
return preName + CifyName(data.symbol.getName()); //Cifying does nothing if not an operator overload
}
case function:
{
if (data.valueType->baseType == template_type)
return "/* template function: " + data.symbol.getName() + " */";
output += "\n" + ValueTypeToCType(data.valueType) + " ";
std::string nameDecoration, parameters;
for (int j = 0; j < children.size()-1; j++) {
if (j > 0)
parameters += ", ";
parameters += ValueTypeToCType(children[j]->getData().valueType) + " " + generate(children[j], enclosingObject);
nameDecoration += "_" + ValueTypeToCTypeDecoration(children[j]->getData().valueType);
}
output += CifyName(data.symbol.getName() + nameDecoration) + "(" + parameters + ")\n" + generate(children[children.size()-1], enclosingObject);
return output;
}
case code_block:
{
output += "{\n";
std::string destructorString = "";
tabLevel++;
for (int i = 0; i < children.size(); i++) {
//std::cout << "Line " << i << std::endl;
std::string line = generate(children[i], enclosingObject);
//std::cout << line << std::endl;
output += line;
if (children[i]->getChildren().size() && children[i]->getChildren()[0]->getDataRef()->type == declaration_statement) {
NodeTree<ASTData> *identifier = children[i]->getChildren()[0]->getChildren()[0];
Type* declarationType = identifier->getDataRef()->valueType;
if (declarationType->getIndirection())
continue;
NodeTree<ASTData> *typeDefinition = declarationType->typeDefinition;
if (!typeDefinition)
continue;
if (typeDefinition->getDataRef()->scope.find("destruct") == typeDefinition->getDataRef()->scope.end())
continue;
destructorString += tabs() + CifyName(typeDefinition->getDataRef()->symbol.getName())
+ "__" + "destruct" + "(&" + generate(identifier, enclosingObject) + ");\n";//Call the destructor
}
}
output += destructorString;
tabLevel--;
output += tabs() + "}";
return output;
}
case expression:
output += " " + data.symbol.getName() + ", ";
case boolean_expression:
output += " " + data.symbol.getName() + " ";
case statement:
return tabs() + generate(children[0], enclosingObject) + ";\n";
case if_statement:
output += "if (" + generate(children[0], enclosingObject) + ")\n\t" + generate(children[1], enclosingObject);
if (children.size() > 2)
output += " else " + generate(children[2], enclosingObject);
return output;
case while_loop:
output += "while (" + generate(children[0], enclosingObject) + ")\n\t" + generate(children[1], enclosingObject);
return output;
case for_loop:
//The strSlice's are there to get ride of an unwanted return and an unwanted semicolon(s)
output += "for (" + strSlice(generate(children[0], enclosingObject),0,-3) + generate(children[1], enclosingObject) + ";" + strSlice(generate(children[2], enclosingObject),0,-3) + ")\n\t" + generate(children[3], enclosingObject);
return output;
case return_statement:
if (children.size())
return "return " + generate(children[0], enclosingObject);
else
return "return";
case assignment_statement:
return generate(children[0], enclosingObject) + " = " + generate(children[1], enclosingObject);
case declaration_statement:
if (children.size() == 1)
return ValueTypeToCType(children[0]->getData().valueType) + " " + generate(children[0], enclosingObject) + ";";
else if (children[1]->getChildren().size() && children[1]->getChildren()[0]->getChildren().size() > 1
&& children[1]->getChildren()[0]->getChildren()[1] == children[0]) {
//That is, if we're a declaration with an init position call (Object a.construct())
//We can tell if our function call (children[1])'s access operation([0])'s lhs ([1]) is the thing we just declared (children[0])
return ValueTypeToCType(children[0]->getData().valueType) + " " + generate(children[0], enclosingObject) + "; " + generate(children[1]) + "/*Init Position Call*/";
} else
return ValueTypeToCType(children[0]->getData().valueType) + " " + generate(children[0], enclosingObject) + " = " + generate(children[1], enclosingObject) + ";";
case if_comp:
if (generate(children[0], enclosingObject) == generatorString)
return generate(children[1], enclosingObject);
return "";
case simple_passthrough:
return strSlice(generate(children[0], enclosingObject), 3, -4);
case function_call:
{
//NOTE: The first (0th) child of a function call node is the declaration of the function
//Handle operators specially for now. Will later replace with
//Inlined functions in the standard library
// std::string name = data.symbol.getName();
// std::cout << name << " == " << children[0]->getData().symbol.getName() << std::endl;
std::string name = children[0]->getDataRef()->symbol.getName();
ASTType funcType = children[0]->getDataRef()->type;
std::cout << "Doing function: " << name << std::endl;
//Test for specail functions only if what we're testing is, indeed, the definition, not a function call that returns a callable function pointer
if (funcType == function) {
if (name == "++" || name == "--")
return generate(children[1], enclosingObject) + name;
if ( (name == "*" || name == "&" || name == "!" ) && children.size() == 2) //Is dereference, not multiplication, address-of, or other unary operator
return name + "(" + generate(children[1], enclosingObject) + ")";
if (name == "[]")
return "(" + generate(children[1], enclosingObject) + ")[" +generate(children[2],enclosingObject) + "]";
if (name == "+" || name == "-" || name == "*" || name == "/" || name == "==" || name == ">=" || name == "<=" || name == "!="
|| name == "<" || name == ">" || name == "%" || name == "+=" || name == "-=" || name == "*=" || name == "/=" || name == "||"
|| name == "&&")
return "((" + generate(children[1], enclosingObject) + ")" + name + "(" + generate(children[2], enclosingObject) + "))";
else if (name == "." || name == "->") {
if (children.size() == 1)
return "/*dot operation with one child*/" + generate(children[0], enclosingObject) + "/*end one child*/";
//If this is accessing an actual function, find the function in scope and take the appropriate action. Probabally an object method
if (children[2]->getDataRef()->type == function) {
std::string functionName = children[2]->getDataRef()->symbol.getName();
NodeTree<ASTData>* possibleObjectType = children[1]->getDataRef()->valueType->typeDefinition;
//If is an object method, generate it like one. Needs extension/modification for inheritence
if (possibleObjectType) {
NodeTree<ASTData>* unaliasedTypeDef = getMethodsObjectType(possibleObjectType, functionName);
if (unaliasedTypeDef) { //Test to see if the function's a member of this type_def, or if this is an alias, of the original type. Get this original type if it exists.
std::string nameDecoration;
std::vector<NodeTree<ASTData>*> functionDefChildren = children[2]->getChildren(); //The function def is the rhs of the access operation
std::cout << "Decorating (in access-should be object) " << name << " " << functionDefChildren.size() << std::endl;
for (int i = 0; i < (functionDefChildren.size() > 0 ? functionDefChildren.size()-1 : 0); i++)
nameDecoration += "_" + ValueTypeToCTypeDecoration(functionDefChildren[i]->getData().valueType);
/*HERE*/ return CifyName(unaliasedTypeDef->getDataRef()->symbol.getName()) +"__" + CifyName(functionName + nameDecoration) + "(" + (name == "." ? "&" : "") + generate(children[1], enclosingObject) + ",";
//The comma lets the upper function call know we already started the param list
//Note that we got here from a function call. We just pass up this special case and let them finish with the perentheses
} else {
std::cout << "Is not in scope or not type" << std::endl;
return "((" + generate(children[1], enclosingObject) + ")" + name + functionName + ")";
}
} else {
std::cout << "Is not in scope or not type" << std::endl;
return "((" + generate(children[1], enclosingObject) + ")" + name + functionName + ")";
}
} else {
//return "((" + generate(children[1], enclosingObject) + ")" + name + generate(children[2], enclosingObject) + ")";
return "((" + generate(children[1], enclosingObject) + ")" + name + generate(children[2]) + ")";
}
} else {
//It's a normal function call, not a special one or a method or anything. Name decorate.
std::vector<NodeTree<ASTData>*> functionDefChildren = children[0]->getChildren();
std::cout << "Decorating (none-special)" << name << " " << functionDefChildren.size() << std::endl;
std::string nameDecoration;
for (int i = 0; i < (functionDefChildren.size() > 0 ? functionDefChildren.size()-1 : 0); i++)
nameDecoration += "_" + ValueTypeToCTypeDecoration(functionDefChildren[i]->getData().valueType);
//Check to see if we're inside of an object and this is a method call
bool isSelfObjectMethod = enclosingObject && contains(enclosingObject->getChildren(), children[0]);
if (isSelfObjectMethod)
output += CifyName(enclosingObject->getDataRef()->symbol.getName()) +"__";
/*HERE*/ output += CifyName(name + nameDecoration) + "(";
if (isSelfObjectMethod)
output += children.size() > 1 ? "this," : "this";
}
} else {
//This part handles cases where our definition isn't the function definition (that is, it is probabally the return from another function)
//It's probabally the result of an access function call (. or ->) to access an object method.
std::string functionCallSource = generate(children[0], enclosingObject);
if (functionCallSource[functionCallSource.size()-1] == ',') //If it's a member method, it's already started the parameter list.
output += children.size() > 1 ? functionCallSource : functionCallSource.substr(0, functionCallSource.size()-1);
else
output += functionCallSource + "(";
}
for (int i = 1; i < children.size(); i++) //children[0] is the declaration
if (i < children.size()-1)
output += generate(children[i], enclosingObject) + ", ";
else
output += generate(children[i], enclosingObject);
output += ") ";
return output;
}
case value:
return data.symbol.getName();
default:
std::cout << "Nothing!" << std::endl;
}
for (int i = 0; i < children.size(); i++)
output += generate(children[i], enclosingObject);
return output;
}
NodeTree<ASTData>* CGenerator::getMethodsObjectType(NodeTree<ASTData>* scope, std::string functionName) {
//check the thing
while (scope != scope->getDataRef()->valueType->typeDefinition) //type is an alias, follow it to the definition
scope = scope->getDataRef()->valueType->typeDefinition;
return (scope->getDataRef()->scope.find(functionName) != scope->getDataRef()->scope.end()) ? scope : NULL;
}
// Returns the function prototype in the out param and the full definition normally
std::string CGenerator::generateObjectMethod(NodeTree<ASTData>* enclosingObject, NodeTree<ASTData>* from, std::string *functionPrototype) {
ASTData data = from->getData();
Type enclosingObjectType = *(enclosingObject->getDataRef()->valueType); //Copy a new type so we can turn it into a pointer if we need to
enclosingObjectType.increaseIndirection();
std::vector<NodeTree<ASTData>*> children = from->getChildren();
std::string nameDecoration, parameters;
for (int i = 0; i < children.size()-1; i++) {
parameters += ", " + ValueTypeToCType(children[i]->getData().valueType) + " " + generate(children[i]);
nameDecoration += "_" + ValueTypeToCTypeDecoration(children[i]->getData().valueType);
}
std::string functionSignature = "\n" + ValueTypeToCType(data.valueType) + " " + CifyName(enclosingObject->getDataRef()->symbol.getName()) +"__"
+ CifyName(data.symbol.getName()) + nameDecoration + "(" + ValueTypeToCType(&enclosingObjectType)
+ " this" + parameters + ")";
*functionPrototype += functionSignature + ";\n";
return functionSignature + "\n" + generate(children[children.size()-1], enclosingObject); //Pass in the object so we can properly handle access to member stuff
}
std::string CGenerator::ValueTypeToCType(Type *type) { return ValueTypeToCTypeThingHelper(type, "*"); }
std::string CGenerator::ValueTypeToCTypeDecoration(Type *type) { return ValueTypeToCTypeThingHelper(type, "_P__"); }
std::string CGenerator::ValueTypeToCTypeThingHelper(Type *type, std::string ptrStr) {
std::string return_type;
switch (type->baseType) {
case none:
if (type->typeDefinition)
return_type = CifyName(type->typeDefinition->getDataRef()->symbol.getName());
else
return_type = "none";
break;
case void_type:
return_type = "void";
break;
case boolean:
return_type = "bool";
break;
case integer:
return_type = "int";
break;
case floating:
return_type = "float";
break;
case double_percision:
return_type = "double";
break;
case character:
return_type = "char";
break;
default:
return_type = "unknown_ValueType";
break;
}
for (int i = 0; i < type->getIndirection(); i++)
return_type += ptrStr;
return return_type;
}
std::string CGenerator::CifyName(std::string name) {
std::string operatorsToReplace[] = { "+", "plus",
"-", "minus",
"*", "star",
"/", "div",
"%", "mod",
"^", "carat",
"&", "amprsd",
"|", "pipe",
"~", "tilde",
"!", "exclamationpt",
",", "comma",
"=", "equals",
"++", "doubleplus",
"--", "doubleminus",
"<<", "doubleleft",
">>", "doubleright",
"::", "scopeop",
"==", "doubleequals",
"!=", "notequals",
"&&", "doubleamprsnd",
"||", "doublepipe",
"+=", "plusequals",
"-=", "minusequals",
"/=", "divequals",
"%=", "modequals",
"^=", "caratequals",
"&=", "amprsdequals",
"|=", "pipeequals",
"*=", "starequals",
"<<=", "doublerightequals",
"<", "lessthan",
">", "greaterthan",
">>=", "doubleleftequals",
"(", "openparen",
")", "closeparen",
"[", "openbracket",
"]", "closebracket",
" ", "space",
".", "dot",
"->", "arrow" };
int length = sizeof(operatorsToReplace)/sizeof(std::string);
//std::cout << "Length is " << length << std::endl;
for (int i = 0; i < length; i+= 2) {
size_t foundPos = name.find(operatorsToReplace[i]);
while(foundPos != std::string::npos) {
name = strSlice(name, 0, foundPos) + "_" + operatorsToReplace[i+1] + "_" + strSlice(name, foundPos+operatorsToReplace[i].length(), -1);
foundPos = name.find(operatorsToReplace[i]);
}
}
return name;
}