Files
kraken/stdlib/parser.krak
2015-08-12 17:41:26 -04:00

462 lines
18 KiB
Plaintext

import grammer:*
import symbol:*
import lexer:*
import tree:*
import vector:*
import stack:*
import map:*
import util:*
import string:*
import mem:*
import io:*
obj parser (Object) {
var input: vector<symbol>
var gram: grammer
var gss: gss
var to_reduce: stack<reduction>
var to_shift: stack< pair<*tree<int>, int> >
var SPPFStepNodes: vector< pair<*tree<symbol>, int> >
var packed_map: map<*tree<symbol>, bool>
fun construct(grammerIn: grammer): *parser {
input.construct()
gram.copy_construct(&grammerIn)
gss.construct()
to_reduce.construct()
to_shift.construct()
SPPFStepNodes.construct()
packed_map.construct()
return this
}
fun copy_construct(old: *parser) {
input.copy_construct(&old->input)
gram.copy_construct(&old->gram)
gss.copy_construct(&old->gss)
to_reduce.copy_construct(&old->to_reduce)
to_shift.copy_construct(&old->to_shift)
SPPFStepNodes.copy_construct(&old->SPPFStepNodes)
packed_map.copy_construct(&old->packed_map)
}
fun operator=(old: ref parser) {
destruct()
copy_construct(&old)
}
fun destruct() {
input.destruct()
gram.destruct()
gss.destruct()
to_reduce.destruct()
to_shift.destruct()
SPPFStepNodes.destruct()
packed_map.destruct()
}
fun parse_input(inputStr: string, name: string): *tree<symbol> {
input.clear()
gss.clear()
to_reduce.clear()
to_shift.clear()
SPPFStepNodes.clear()
packed_map.clear()
// if the zero state contains any reductions for state 0 and eof, then
// it must be reducing to the goal state
println("checking the bidness")
if (inputStr == "" && gram.parse_table.get(0, eof_symbol()).contains(action(reduce, 0))) {
println("Accept on no input for ")
println(name)
return new<tree<symbol>>()->construct(null_symbol())
}
var lex = lexer(gram.terminals)
lex.set_input(inputStr)
var current_symbol.construct(): symbol
for (current_symbol = lex.next(); current_symbol != eof_symbol() && current_symbol != invalid_symbol(); current_symbol = lex.next();) {
/*println("current_symbol is ")*/
/*println(current_symbol.to_string())*/
input.addEnd(current_symbol)
}
input.addEnd(current_symbol)
if (current_symbol == invalid_symbol()) {
println("lexing failed for ")
println(name)
return null<tree<symbol>>()
}
var v0 = gss.new_node(0)
gss.add_to_frontier(0, v0)
var null_symbol_tree = null<tree<symbol>>()
gram.parse_table.get(0, input[0]).for_each(fun(act: action) {
println("for each action")
act.print()
if (act.act == push)
to_shift.push(make_pair(v0, act.state_or_rule))
else if (act.act == reduce && fully_reduces_to_null(gram.rules[act.state_or_rule]))
to_reduce.push(reduction(v0, gram.rules[act.state_or_rule].lhs, 0, null_symbol_tree, null_symbol_tree))
})
for (var i = 0; i < input.size; i++;) {
if (gss.frontier_is_empty(i)) {
print(i)
print("th frontier is empty in file '")
print(name)
print("' with txt ")
print(input[i].to_string())
println()
return null<tree<symbol>>()
}
SPPFStepNodes.clear()
print("to_reduce size: ")
println(to_reduce.size())
print("to_shift size: ")
println(to_shift.size())
while (to_reduce.size())
reducer(i)
shifter(i)
}
var acc_state = gss.frontier_get_acc_state(input.size-1)
if (acc_state) {
println("ACCEPTED!")
return gss.get_edge(acc_state, v0)
}
println("REJECTED")
println("parsing (not lexing) failed for ")
println(name)
return null<tree<symbol>>()
}
fun reducer(i: int) {
println("reducing")
var curr_reduction = to_reduce.pop()
gss.get_reachable_paths(curr_reduction.from, max(0, curr_reduction.length-1)).
for_each(fun(path: ref vector<*tree<int>>) {
println("in get_reachable_paths for_each loop")
var path_edges = range(path.size-1).map(fun(indx: int): *tree<symbol> { return gss.get_edge(path[indx], path[indx+1]);}).reverse()
print("path ")
path.for_each(fun(part: *tree<int>) {
print(part->data)
print(" ")
})
println()
println("got path edges")
println("there are this many:")
println(path_edges.size)
if (curr_reduction.length != 0) {
path_edges.addEnd(curr_reduction.label)
println("also adding the one from the reduction")
println(curr_reduction.label->data.to_string())
}
var curr_reached = path.last()
print("checking shift for state ")
print(curr_reached->data)
print(" and ")
println(curr_reduction.sym.to_string())
// if this is the Goal = a type reduction, then skip the actual reduction part.
// the shift lookup will fail, and likely other things, and this is our accept
// criteria anyway
/*if (curr_reached->data == 0 && curr_reduction.sym == gram.rules[0].lhs)*/
if (curr_reduction.sym == gram.rules[0].lhs)
return;
var shift_to = gram.parse_table.get_shift(curr_reached->data, curr_reduction.sym).state_or_rule
println("got shift to")
var new_label = null<tree<symbol>>()
if (curr_reduction.length == 0) {
new_label = curr_reduction.nullable_parts
} else {
var reached_frontier = gss.get_containing_frontier(curr_reached)
for (var j = 0; j < SPPFStepNodes.size; j++;) {
if (SPPFStepNodes[j].second == reached_frontier
&& SPPFStepNodes[j].first->data == curr_reduction.sym) {
new_label = SPPFStepNodes[j].first
break
}
}
if (!new_label) {
new_label = new<tree<symbol>>()->construct(curr_reduction.sym)
SPPFStepNodes.addEnd(make_pair(new_label, reached_frontier))
}
}
var shift_to_node = gss.in_frontier(i, shift_to)
if (shift_to_node) {
if (!gss.has_edge(shift_to_node, curr_reached)) {
gss.add_edge(shift_to_node, curr_reached, new_label)
// do non-null reductions
if (curr_reduction.length) {
gram.parse_table.get(shift_to, input[i]).for_each(fun(act: action) {
var reduce_rule = gram.rules[act.state_or_rule]
if (act.act == reduce && !fully_reduces_to_null(reduce_rule))
to_reduce.push(reduction(curr_reached, reduce_rule.lhs,
act.rule_position,
get_nullable_parts(reduce_rule),
new_label))
})
}
}
} else {
shift_to_node = gss.new_node(shift_to)
gss.add_to_frontier(i, shift_to_node)
gss.add_edge(shift_to_node, curr_reached, new_label)
gram.parse_table.get(shift_to, input[i]).for_each(fun(act: action) {
if (act.act == push) {
to_shift.push(make_pair(shift_to_node, act.state_or_rule))
} else {
var action_rule = gram.rules[act.state_or_rule]
if (fully_reduces_to_null(action_rule)) {
to_reduce.push(reduction(shift_to_node, action_rule.lhs, 0,
get_nullable_parts(action_rule),
null<tree<symbol>>() ))
} else if (curr_reduction.length != 0) {
to_reduce.push(reduction(curr_reached, action_rule.lhs, act.rule_position,
get_nullable_parts(action_rule),
new_label ))
}
}
})
}
if (curr_reduction.length)
add_children(new_label, path_edges, curr_reduction.nullable_parts)
})
}
fun shifter(i: int) {
println("shifting")
if (i >= input.size-1)
return; // darn ambiguity
print("shifting on ")
println(input[i].to_string())
var next_shifts = stack< pair<*tree<int>, int> >()
var new_label = new<tree<symbol>>()->construct(input[i])
while (!to_shift.empty()) {
println("to_shift not empty")
var shift = to_shift.pop()
println("post pop")
var shift_to_node = gss.in_frontier(i+1, shift.second)
println("post in_frontier")
if (shift_to_node) {
print("already in frontier ")
println(i+1)
gss.add_edge(shift_to_node, shift.first, new_label)
gram.parse_table.get_reduces(shift.second, input[i+1]).for_each(fun(action: action) {
var reduce_rule = gram.rules[action.state_or_rule]
if (!fully_reduces_to_null(reduce_rule)) {
to_reduce.push(reduction(shift.first, reduce_rule.lhs, action.rule_position,
get_nullable_parts(reduce_rule),
new_label ))
}
})
} else {
print("adding to frontier ")
println(i+1)
shift_to_node = gss.new_node(shift.second)
gss.add_to_frontier(i+1, shift_to_node)
println("post add to frontier")
gss.add_edge(shift_to_node, shift.first, new_label)
println("post add edger")
gram.parse_table.get(shift.second, input[i+1]).for_each(fun(action: action) {
println("looking at an action")
if (action.act == push) {
println("is push")
next_shifts.push(make_pair(shift_to_node, action.state_or_rule))
} else {
println("is reduce")
var action_rule = gram.rules[action.state_or_rule]
if (!fully_reduces_to_null(action_rule)) {
println("does not reduce to null")
to_reduce.push(reduction(shift.first, action_rule.lhs, action.rule_position,
get_nullable_parts(action_rule),
new_label ))
} else {
println("does reduce to null")
to_reduce.push(reduction(shift_to_node, action_rule.lhs, 0,
get_nullable_parts(action_rule),
null<tree<symbol>>() ))
}
}
})
}
}
to_shift = next_shifts
}
fun add_children(parent: *tree<symbol>, children: vector<*tree<symbol>>, nullable_parts: *tree<symbol>) {
if (nullable_parts)
children.add(nullable_parts)
if (!belongs_to_family(parent, children)) {
parent->children.add_all(children)
} else {
if (!are_packed(parent->children)) {
// ambiguity inner
var sub_parent = new<tree<symbol>>()->construct(symbol("AmbiguityInner", true))
set_packed(sub_parent, true)
sub_parent->children.add_all(parent->children)
parent->children.clear()
parent->children.add(sub_parent)
}
// ambiguity outer
var next_sub_parent = new<tree<symbol>>()->construct(symbol("AmbiguityOuter", true))
set_packed(next_sub_parent, true)
parent->children.add(next_sub_parent)
next_sub_parent->children.add_all(children)
}
}
fun belongs_to_family(node: *tree<symbol>, nodes: vector<*tree<symbol>>): bool {
var family_count = 0
node->children.for_each(fun(child: *tree<symbol>) {
if (nodes.contains(child))
family_count++
})
return family_count == nodes.size
}
fun are_packed(nodes: vector<*tree<symbol>>): bool {
return nodes.any_true(fun(it: *tree<symbol>):bool { return packed_map.contains_key(it) && packed_map[it]; })
}
fun set_packed(node: *tree<symbol>, packed: bool) {
packed_map.set(node, packed)
}
fun fully_reduces_to_null(r: ref rule): bool {
return r.position == 0 && gram.first_vector(r.rhs).contains(null_symbol())
}
fun get_nullable_parts(r: ref rule): *tree<symbol> {
if (fully_reduces_to_null(r))
return new<tree<symbol>>()->construct(null_symbol())
return null<tree<symbol>>()
}
}
obj gss (Object) {
var data: vector<vector<*tree<int>>>
var edges: map< pair<*tree<int>, *tree<int>>, *tree<symbol> >
fun construct(): *gss {
data.construct()
edges.construct()
}
fun copy_construct(old: *gss) {
data.copy_construct(&old->data)
edges.copy_construct(&old->edges)
}
fun destruct() {
data.destruct()
edges.destruct()
}
fun clear() {
data.clear()
edges.clear()
}
fun new_node(state: int): *tree<int> {
return new<tree<int>>()->construct(state)
}
fun add_to_frontier(frontier: int, node: *tree<int>) {
while(data.size <= frontier)
data.addEnd(vector<*tree<int>>())
data[frontier].addEnd(node)
}
fun frontier_is_empty(frontier: int): bool {
return frontier >= data.size || data[frontier].size == 0
}
fun frontier_get_acc_state(frontier: int): *tree<int> {
// the accepting state is always state 1, for now
return in_frontier(frontier, 1)
}
fun in_frontier(frontier: int, state: int): *tree<int> {
if (frontier >= data.size)
return null<tree<int>>()
for (var i = 0; i < data[frontier].size; i++;)
if (data[frontier][i]->data == state)
return data[frontier][i]
return null<tree<int>>()
}
fun get_edge(start: *tree<int>, end: *tree<int>): *tree<symbol> {
return edges[make_pair(start, end)]
}
fun has_edge(start: *tree<int>, end: *tree<int>): bool {
// could also look in map, but this is faster...
return start->children.find(end) != -1
}
fun add_edge(start: *tree<int>, end: *tree<int>, edge: *tree<symbol>) {
start->children.add(end)
edges.set(make_pair(start,end), edge)
}
fun get_containing_frontier(node: *tree<int>): int {
for (var i = 0; i < data.size; i++;)
if (data[i].contains(node))
return i
return -1
}
fun get_reachable_paths(start: *tree<int>, length: int): vector<vector<*tree<int>>> {
var paths = vector<vector<*tree<int>>>()
var recursive_path_find: fun(*tree<int>, int, vector<*tree<int>>):void = fun(start: *tree<int>, length: int, current_path: vector<*tree<int>>) {
current_path.addEnd(start)
if (!length) {
paths.addEnd(current_path)
return
}
start->children.for_each(fun(child: *tree<int>) {
recursive_path_find(child, length-1, current_path)
})
}
recursive_path_find(start, length, vector<*tree<int>>())
return paths
}
}
fun reduction(f: *tree<int>, s: symbol, l: int, n: *tree<symbol>, label:*tree<symbol>): reduction {
var toRet.construct(f,s,l,n,label): reduction
return toRet
}
obj reduction (Object) {
var from: *tree<int>
var sym: symbol
var length: int
var nullable_parts: *tree<symbol>
var label: *tree<symbol>
fun construct(f: *tree<int>, s: symbol, l: int, n: *tree<symbol>, labelIn:*tree<symbol>): *reduction {
from = f
sym.copy_construct(&s)
length = l
nullable_parts = n
label = labelIn
return this
}
fun copy_construct(old: *reduction) {
from = old->from
sym.copy_construct(&old->sym)
length = old->length
nullable_parts = old->nullable_parts
label = old->label
}
fun operator=(other: reduction):void {
destruct()
copy_construct(&other)
}
fun destruct() {
sym.destruct()
}
}
fun syntax_tree_to_dot(root: *tree<symbol>): string {
var ret = string("digraph Kaken {\n")
var helper: fun(*tree<symbol>):void = fun(node: *tree<symbol>) {
/*ret += node->data.to_string() + ";;;;\n";*/
node->children.for_each(fun(child: *tree<symbol>) {
if (!child)
return; // where on earth does the null come from
var escaped_child = string("")
child->data.to_string().data.for_each(fun(c: char) {
if (c != '"')
escaped_child += c
else
escaped_child += "\\\""
})
ret += string("\"") + node->data.to_string() + "\" -> \"" + escaped_child + "\"\n";
helper(child)
})
}
if (root)
helper(root)
return ret + "}"
}