Files
kraken/src/ASTTransformation.cpp
2014-12-19 18:29:33 -05:00

1319 lines
78 KiB
C++

#include "ASTTransformation.h"
ASTTransformation::ASTTransformation(Importer *importerIn) {
importer = importerIn;
topScope = NULL;
//Set up language level reserved identifier scope (only this, right now)
languageLevelReservedWords["this"].push_back(new NodeTree<ASTData>("identifier", ASTData(identifier, Symbol("this", true), NULL)));
//Set up language level special scope. (the final scope checked)
//Note the NULL type
languageLevelOperators["+"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("+", true), NULL)));
languageLevelOperators["-"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("-", true), NULL)));
languageLevelOperators["*"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("*", true), NULL)));
languageLevelOperators["/"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("/", true), NULL)));
languageLevelOperators["%"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("%", true), NULL)));
languageLevelOperators["&"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("&", true), NULL)));
languageLevelOperators["--"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("--", true), NULL)));
languageLevelOperators["++"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("++", true), NULL)));
languageLevelOperators["=="].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("==", true), new Type(boolean))));
languageLevelOperators["<="].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("<=", true), new Type(boolean))));
languageLevelOperators[">="].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol(">=", true), new Type(boolean))));
languageLevelOperators["<"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("<", true), new Type(boolean))));
languageLevelOperators[">"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol(">", true), new Type(boolean))));
languageLevelOperators["&&"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("&&", true), new Type(boolean))));
languageLevelOperators["||"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("||", true), new Type(boolean))));
languageLevelOperators["!"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("!", true), new Type(boolean))));
languageLevelOperators["*="].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("*=", true), NULL)));
languageLevelOperators["+="].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("+=", true), NULL)));
languageLevelOperators["-="].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("-=", true), NULL)));
languageLevelOperators["."].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol(".", true), NULL)));
languageLevelOperators["->"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("->", true), NULL)));
languageLevelOperators["[]"].push_back(new NodeTree<ASTData>("function", ASTData(function, Symbol("[]", true), NULL)));
}
ASTTransformation::~ASTTransformation() {
//
}
//First pass defines all type_defs (objects and ailises)
NodeTree<ASTData>* ASTTransformation::firstPass(std::string fileName, NodeTree<Symbol>* parseTree) {
NodeTree<ASTData>* translationUnit = new NodeTree<ASTData>("translation_unit", ASTData(translation_unit));
std::vector<NodeTree<Symbol>*> children = parseTree->getChildren();
importer->registerAST(fileName, translationUnit, parseTree); //Register ourselves with the importer.
//This puts us in the scope and the list of ASTs that go through all the passes
//Go through and define all types (type_defs whether they are classes or ailises, as well as including non-instantiated templates)
for (NodeTree<Symbol>* i : children) {
if (i->getDataRef()->getName() == "type_def") {
std::string name;
if (i->getChildren()[0]->getData().getName() == "template_dec") // It's a template
name = concatSymbolTree(i->getChildren()[1]);
else //It's not
name = concatSymbolTree(i->getChildren()[0]);
NodeTree<ASTData>* firstDec = new NodeTree<ASTData>("type_def", ASTData(type_def, Symbol(name, true, name)));
//If this is a template, go ahead and set it up. Pass 2 needs templates set up so it can (partially) instantiate them.
//So we give this typedef its name without any template types and make its type template_type, and point to this from node.
//Then, when this template is instantiated, it will run transform on from with the types filled in.
auto typedefChildren = i->getChildren();
if (typedefChildren[0]->getData().getName() == "template_dec") {
if (typedefChildren.size() > 2 && typedefChildren[2]->getData().getName() == "traits")
firstDec->getDataRef()->valueType = new Type(template_type, i, parseTraits(i->getChildren()[2]));
else
firstDec->getDataRef()->valueType = new Type(template_type, i);
}
else if (typedefChildren.size() > 1 && typedefChildren[1]->getData().getName() == "traits")
firstDec->getDataRef()->valueType = new Type(firstDec, parseTraits(i->getChildren()[1]));
else if (typedefChildren.size() == 1 || typedefChildren[1]->getData().getName() != "type") //We don't make the type for alises, because the second pass will assign it the type it points to
firstDec->getDataRef()->valueType = new Type(firstDec);
translationUnit->addChild(firstDec);
translationUnit->getDataRef()->scope[name].push_back(firstDec);
firstDec->getDataRef()->scope["~enclosing_scope"].push_back(translationUnit);
}
}
//Now go through and do all imports
//We do this second so that if an import also imports us, all of our stuff has already been defined
for (NodeTree<Symbol>* i : children) {
if (i->getDataRef()->getName() == "import") {
auto importChildren = i->getChildren();
std::string toImport = concatSymbolTree(importChildren[0]);
auto importNode = new NodeTree<ASTData>("import", ASTData(import, Symbol(toImport, true)));
translationUnit->addChild(importNode);
//Do the imported file too
NodeTree<ASTData>* outsideTranslationUnit = importer->importFirstPass(toImport + ".krak");
translationUnit->getDataRef()->scope[toImport].push_back(outsideTranslationUnit); //Put this transation_unit in the scope as it's files name
// Now go through and handle anything like import asdf: a; or import asdf: a,b; or import asdf: *;
// We do this by looping through the children and adding links to them as the scope in the import node. If it's *, we add the entire translationUnit link.
// Note that import affects scope in two ways:
// (1) The other file's translationUnit is added to our translationUnit's scope under it's name
// (2) The import node's scope contains the nodes indicated by the qualifiers after the import (i.e. the import a:b; or import a:*;)
for (auto importQualifer : slice(importChildren, 1, -1)) { // Not the first child, that's the name of the file
auto name = concatSymbolTree(importQualifer);
if (name == "*") {
std::vector<NodeTree<ASTData>*> tmp;
tmp.push_back(outsideTranslationUnit);
importNode->getDataRef()->scope["*"] = tmp;
} else {
bool found = false;
for (auto outsideScopeEntry : outsideTranslationUnit->getDataRef()->scope) {
if (name == outsideScopeEntry.first) {
importNode->getDataRef()->scope[outsideScopeEntry.first] = outsideScopeEntry.second;
found = true;
}
}
// If it's not found yet, put it in as a empty vector for pass 3.
// This makes sure that it does appear in the scope map, which is what we iterate through later.
if (!found)
importNode->getDataRef()->scope[name] = std::vector<NodeTree<ASTData>*>();
}
}
}
}
return translationUnit;
}
std::set<std::string> ASTTransformation::parseTraits(NodeTree<Symbol>* traitsNode) {
std::set<std::string> traits;
//Every other one b/c comma separated
for (auto i : slice(traitsNode->getChildren(), 0, -1, 2))
traits.insert(concatSymbolTree(i));
return traits;
}
//Second pass defines data inside objects, outside declaration statements, and function prototypes (since we have type_defs now)
void ASTTransformation::secondPass(NodeTree<ASTData>* ast, NodeTree<Symbol>* parseTree) {
topScope = ast; //Top scope is maintained for templates, which need to add themselves to the top scope from where ever they are instantiated
std::vector<NodeTree<Symbol>*> children = parseTree->getChildren();
//Go through and declare data internal to objects as well as all function prototypes (methods and otherwise)
//Note that this pass can instantiate class templates
for (NodeTree<Symbol>* i : children) {
if (i->getDataRef()->getName() == "type_def") {
if (i->getChildren()[0]->getData().getName() == "template_dec") // It's a template
continue; //We've already set upt the class templates
std::vector<NodeTree<Symbol>*> typedefChildren = i->getChildren();
std::string name = concatSymbolTree(typedefChildren[0]);
NodeTree<ASTData>* typeDef = ast->getDataRef()->scope[name][0]; //No overloaded types (besides uninstantiated templates, which can have multiple versions based on types or specilizations)
//It's an alias. Note that if typedefChildren.size() == 1 it's because its a regular class with no body, i.e. {}
if (typedefChildren.size() > 1 && typedefChildren[1]->getData().getName() == "type") {
Type* aliasedType = typeFromTypeNode(typedefChildren[1], ast, std::map<std::string, Type*>());
typeDef->getDataRef()->valueType = aliasedType;
typeDef->getDataRef()->scope["~enclosing_scope"][0] = aliasedType->typeDefinition; //So that object lookups find the right member. Note that this overrides translation_unit as a parent scope
// std::cout << name << " alias's to " << aliasedType->typeDefinition << std::endl;
// std::cout << "that is " << aliasedType->typeDefinition->getDataRef()->toString() << std::endl;
continue;
}
//Do the inside of classes here
secondPassDoClassInsides(typeDef, typedefChildren, std::map<std::string, Type*>());
} else if (i->getDataRef()->getName() == "function") {
//Do prototypes of functions
ast->addChild(secondPassFunction(i, ast, std::map<std::string, Type*>()));
} else if (i->getDataRef()->getName() == "declaration_statement") {
//Do declaration statements
ast->addChild(secondPassDeclaration(i, ast, std::map<std::string, Type*>()));
}
}
}
void ASTTransformation::secondPassDoClassInsides(NodeTree<ASTData>* typeDef, std::vector<NodeTree<Symbol>*> typedefChildren, std::map<std::string, Type*> templateTypeReplacements) {
//We pull out this functionality into a new function because this is used in typeFromTypeNode to partially instantiate templates
for (NodeTree<Symbol>* j : typedefChildren) {
if (j->getDataRef()->getName() == "declaration_statement") {
//do declaration
typeDef->addChild(secondPassDeclaration(j, typeDef, templateTypeReplacements));
} else if (j->getDataRef()->getName() == "function") {
//do member method
typeDef->addChild(secondPassFunction(j, typeDef, templateTypeReplacements));
}
}
}
//This function may need to partially instantiate a class template
NodeTree<ASTData>* ASTTransformation::secondPassDeclaration(NodeTree<Symbol>* from, NodeTree<ASTData>* scope, std::map<std::string, Type*> templateTypeReplacements) {
//Check here for method call (an error here)
NodeTree<ASTData>* decStmt = new NodeTree<ASTData>("declaration_statement", ASTData(declaration_statement));
std::string newIdentifierStr = concatSymbolTree(from->getChildren()[1]);
Type* identifierType = typeFromTypeNode(from->getChildren()[0], scope, templateTypeReplacements);
std::cout << "Declaring an identifier " << newIdentifierStr << " to be of type " << identifierType->toString() << std::endl;
NodeTree<ASTData>* newIdentifier = new NodeTree<ASTData>("identifier", ASTData(identifier, Symbol(newIdentifierStr, true), identifierType));
scope->getDataRef()->scope[newIdentifierStr].push_back(newIdentifier);
decStmt->getDataRef()->scope["~enclosing_scope"].push_back(scope);
decStmt->addChild(newIdentifier);
return decStmt;
}
//This function may need to partially instantiate a class template
NodeTree<ASTData>* ASTTransformation::secondPassFunction(NodeTree<Symbol>* from, NodeTree<ASTData>* scope, std::map<std::string, Type*> templateTypeReplacements) {
//If this is a function template
std::vector<NodeTree<Symbol>*> children = from->getChildren();
NodeTree<ASTData>* functionDef = NULL;
std::string functionName;
if (children[0]->getData().getName() == "template_dec") {
functionName = concatSymbolTree(children[2]);
functionDef = new NodeTree<ASTData>("function", ASTData(function, Symbol(functionName, true), new Type(template_type, from)));
scope->getDataRef()->scope[functionName].push_back(functionDef);
functionDef->getDataRef()->scope["~enclosing_scope"].push_back(scope);
std::map<std::string, Type*> yetToBeInstantiatedTemplateTypes; //So that template types (like T) that have not been placed yet are found and given
//a special Type() - baseType = template_type_type
for (auto i : slice(children[0]->getChildren(), 1, -1, 2)) {//skip commas
if (i->getChildren().size() == 1)
yetToBeInstantiatedTemplateTypes[concatSymbolTree(i)] = new Type(template_type_type); //This may have to be combined with templateTypeReplacements if we do templated member functions inside of templated classes
else //has traits
yetToBeInstantiatedTemplateTypes[concatSymbolTree(i->getChildren()[0])] = new Type(template_type_type, parseTraits(i->getChildren()[1])); //This may have to be combined with templateTypeReplacements if we do templated member functions inside of templated classes
}
auto transChildren = transformChildren(slice(children,3,-2), std::set<int>(), functionDef, std::vector<Type>(), yetToBeInstantiatedTemplateTypes);
std::cout << "Template function " << functionName << " has these parameters: ";
for (auto i : transChildren)
std::cout << "||" << i->getDataRef()->toString() << "|| ";
std::cout << "DoneList" << std::endl;
functionDef->addChildren(transChildren);
std::cout << "Finished Non-Instantiated Template function " << functionName << std::endl;
return functionDef;
}
functionName = concatSymbolTree(children[1]);
functionDef = new NodeTree<ASTData>("function", ASTData(function, Symbol(functionName, true), typeFromTypeNode(children[0], scope, templateTypeReplacements)));
scope->getDataRef()->scope[functionName].push_back(functionDef);
functionDef->getDataRef()->scope["~enclosing_scope"].push_back(scope);
//We only do the parameter nodes. We don't do the body yet, as this is the secondPass
auto transChildren = transformChildren(slice(children,2,-2), std::set<int>(), functionDef, std::vector<Type>(), templateTypeReplacements);
// std::cout << "REGULAR function " << functionName << " has " << transChildren.size() << " parameters: ";
// for (auto i : transChildren)
// std::cout << "||" << i->getDataRef()->toString() << "|| ";
// std::cout << "DoneList" << std::endl;
functionDef->addChildren(transChildren);
return functionDef;
}
//Third pass redoes all imports to import the new function prototypes and identifiers
void ASTTransformation::thirdPass(NodeTree<ASTData>* ast) {
std::vector<NodeTree<ASTData>*> children = ast->getChildren();
//Go through and do all imports again
for (NodeTree<ASTData>* i : children) {
if (i->getDataRef()->type == import) {
std::string toImport = i->getDataRef()->symbol.getName();
NodeTree<ASTData>* outsideTranslationUnit = importer->getUnit(toImport + ".krak");
//Now add all functions to scope
std::cout << "Trying to re-import from " << toImport << std::endl;
for (auto j = outsideTranslationUnit->getDataRef()->scope.begin(); j != outsideTranslationUnit->getDataRef()->scope.end(); j++) {
std::cout << "Looking at " << j->first << std::endl;
// If we're supposed to import this... (meaning that this name is in the scope already)
if (i->getDataRef()->scope.find(j->first) == i->getDataRef()->scope.end())
continue;
std::cout << "Looking through " << j->first << std::endl;
for (auto k : j->second)
if (k->getDataRef()->type == function || k->getDataRef()->type == identifier)
std::cout << "Copying " << j->first << std::endl, i->getDataRef()->scope[j->first].push_back(k);
else
std::cout << "Not Copying " << j->first << std::endl;
}
}
}
}
//The fourth pass finishes up by doing all function bodies
void ASTTransformation::fourthPass(NodeTree<ASTData>* ast, NodeTree<Symbol>* parseTree) {
topScope = ast; //Top scope is maintained for templates, which need to add themselves to the top scope from where ever they are instantiated
std::vector<NodeTree<Symbol>*> children = parseTree->getChildren();
//Go through and finish both regular functions and class methods
//Note that this pass can instantiate class AND function templates
for (NodeTree<Symbol>* i : children) {
if (i->getDataRef()->getName() == "type_def") {
if (i->getChildren()[0]->getData().getName() == "template_dec") // It's a template
continue; //We've already set up the class templates
std::vector<NodeTree<Symbol>*> typedefChildren = i->getChildren();
std::string name = concatSymbolTree(typedefChildren[0]);
NodeTree<ASTData>* typeDef = ast->getDataRef()->scope[name][0]; //No overloaded types
//It's an alias. Note that typedefChildren.size() can equal one when it's a regular class with an empty body, i.e. {}
if (typedefChildren.size() > 1 && typedefChildren[1]->getData().getName() == "type")
continue; //We're done with aliases too
//Do the inside of classes here
for (NodeTree<Symbol>* j : typedefChildren) {
if (j->getDataRef()->getName() == "function") {
fourthPassFunction(j, searchScopeForFunctionDef(typeDef, j, std::map<std::string, Type*>()), std::map<std::string, Type*>()); //do member method
}
}
} else if (i->getDataRef()->getName() == "function") {
//Do prototypes of functions
if (i->getChildren()[0]->getData().getName() == "template_dec")
continue; //We've already set up function templates
fourthPassFunction(i, searchScopeForFunctionDef(ast, i, std::map<std::string, Type*>()), std::map<std::string, Type*>());
}
}
// We do these here, in a loop, so that we can do mututally recursive definitions
// even inside of class templates. As its methods may cause partial instantiation of
// other class templates, we need to do this until the size no longer changes.
std::vector<NodeTree<ASTData>*> classTemplates;
int lastSize = 0;
while (lastSize != ast->getDataRef()->scope.size()) {
lastSize = ast->getDataRef()->scope.size();
classTemplates.clear();
for (auto i : ast->getDataRef()->scope) {
if (i.second[0]->getDataRef()->type == type_def && i.second[0]->getDataRef()->valueType->templateTypeReplacement.size()) {
classTemplates.push_back(i.second[0]);
std::cout << "Saving " << i.second[0]->getDataRef()->toString() << " to instantiate." << std::endl;
}
}
for (auto i : classTemplates) {
Type* classTemplateType = i->getDataRef()->valueType;
std::cout << "Instantiating template " << i->getDataRef()->toString() << std::endl;
for (NodeTree<Symbol>* j : classTemplateType->templateDefinition->getChildren())
if (j->getDataRef()->getName() == "function")
fourthPassFunction(j, searchScopeForFunctionDef(i, j, classTemplateType->templateTypeReplacement), classTemplateType->templateTypeReplacement); //do member method
classTemplateType->templateTypeReplacement.clear(); // This template has been fully instantiated, clear it's map so it won't be instantiated again
}
}
}
//This function finds the right AST definition in a scope given its parseTree
NodeTree<ASTData>* ASTTransformation::searchScopeForFunctionDef(NodeTree<ASTData>* scope, NodeTree<Symbol>* parseTree, std::map<std::string, Type*> templateTypeReplacements) {
std::string functionName = concatSymbolTree(parseTree->getChildren()[1]);
std::vector<Type> types;
std::vector<NodeTree<Symbol>*> children = parseTree->getChildren();
//Skipping the initial return type and identifier as well as the final code block
std::cout << "\n Searching scope for function def, function is :" << concatSymbolTree(children[1]) << ", children size is " << children.size() << std::endl;
for (int i = 2; i < children.size()-1; i+=2) { //Skip over commas
std::cout << "Making type for lookup ||" << concatSymbolTree(children[i]) << "||" << std::endl;
Type type = *typeFromTypeNode(children[i]->getChildren()[0], scope, templateTypeReplacements);
std::cout << "Type made: " << type.toString() << std::endl;
types.push_back(type);
}
std::cout << "About to search scope about " << concatSymbolTree(children[1]) << std::endl;
NodeTree<ASTData>* result = functionLookup(scope, functionName, types);
std::cout << "Done searching scope about " << concatSymbolTree(children[1]) << std::endl;
return result;
}
//This function does the function bodies given its start (the prototype)
//It is used in the fourth pass to finish things up
//Note that it may instantiate class OR function templates, which need to be fully instantiated
void ASTTransformation::fourthPassFunction(NodeTree<Symbol>* from, NodeTree<ASTData>* functionDef, std::map<std::string, Type*> templateTypeReplacements) {
NodeTree<Symbol>* codeBlock = from->getChildren()[from->getChildren().size()-1];
functionDef->addChild(transform(codeBlock, functionDef, std::vector<Type>(), templateTypeReplacements));
}
NodeTree<ASTData>* ASTTransformation::transform(NodeTree<Symbol>* from) {
//Set up top scope
return transform(from, NULL, std::vector<Type>(), std::map<std::string, Type*>());
}
NodeTree<ASTData>* ASTTransformation::transform(NodeTree<Symbol>* from, NodeTree<ASTData>* scope, std::vector<Type> types, std::map<std::string, Type*> templateTypeReplacements) {
Symbol current = from->getData();
std::string name = current.getName();
NodeTree<ASTData>* newNode = NULL;
std::vector<NodeTree<Symbol>*> children = from->getChildren();
std::set<int> skipChildren;
if (name == "identifier" || name == "scoped_identifier") {
//Make sure we get the entire name
std::string lookupName = concatSymbolTree(from);
std::cout << "Looking up: " << lookupName << std::endl;
if (types.size()) {
newNode = functionLookup(scope, lookupName, types);
if (newNode == NULL) {
std::cout << "scope lookup error! Could not find " << lookupName << " in identifier (functionLookup)" << std::endl;
throw "LOOKUP ERROR: " + lookupName;
}
} else {
auto possibleMatches = scopeLookup(scope, lookupName);
if (!possibleMatches.size()) {
std::cout << "scope lookup error! Could not find " << lookupName << " in identifier (scopeLookup)" << std::endl;
throw "LOOKUP ERROR: " + lookupName;
}
newNode = possibleMatches[0];
}
return newNode;
} else if (name == "type_def") {
//If it is an alisis of a type
std::string typeAlias;
std::cout << "The scope here at type_def is " << scope->getDataRef()->toString() << std::endl;
if (children[1]->getData().getName() == "type") {
typeAlias = concatSymbolTree(children[0]);
newNode = scope->getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit.
//This is done so that types that reference each other can be declared in any order
newNode->getDataRef()->valueType = typeFromTypeNode(children[1], scope, templateTypeReplacements);
skipChildren.insert(0); //Don't want any children, it's unnecessary for ailising
skipChildren.insert(1);
} else { //Is a struct or class
Type* objectType = NULL;
if (children[0]->getData().getName() == "template_dec") {
typeAlias = concatSymbolTree(children[1]);
std::cout << "Template Type!"<<std::endl;
newNode = scope->getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit.
//This is done so that types that reference each other can be declared in any order
// std::cout << "typeAlias is " << typeAlias << " and newNode is " << newNode << std::endl;
//So we give this typedef its name without any template types and make its type template_type, and point to this from node.
//Then, when this template is instantiated, it will run transform on from with the types filled in.
objectType = new Type(template_type, from);
} else {
typeAlias = concatSymbolTree(children[0]);
newNode = scope->getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit.
//This is done so that types that reference each other can be declared in any order
objectType = new Type(newNode);
skipChildren.insert(0); //Identifier lookup will be ourselves, as we just added ourselves to the scope
}
newNode->getDataRef()->valueType = objectType; //Type is self-referential since this is the definition
}
//scope->getDataRef()->scope[typeAlias].push_back(newNode);
newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope);
//Templates are done here. No need to go farther
if (children[0]->getData().getName() == "template_dec")
return newNode;
scope = newNode;
} else if (name == "function") {
std::string functionName;
/*MULTHERE*/ //If this is a function template
if (children[0]->getData().getName() == "template_dec") {
functionName = concatSymbolTree(children[2]);
newNode = new NodeTree<ASTData>(name, ASTData(function, Symbol(functionName, true), new Type(template_type, from)));
scope->getDataRef()->scope[functionName].push_back(newNode);
newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope);
std::map<std::string, Type*> yetToBeInstantiatedTemplateTypes; //So that template types (like T) that have not been placed yet are found and given
//a special Type() - baseType = template_type_type
for (auto i : slice(children[0]->getChildren(), 1, -1, 2)) //skip commas
yetToBeInstantiatedTemplateTypes[concatSymbolTree(i)] = new Type(template_type_type); //This may have to be combined with templateTypeReplacements if we do templated member functions inside of templated classes
auto transChildren = transformChildren(slice(children,3,-2), std::set<int>(), newNode, types, yetToBeInstantiatedTemplateTypes);
std::cout << "Template function " << functionName << " has these parameters: ";
for (auto i : transChildren)
std::cout << "||" << i->getDataRef()->toString() << "|| ";
std::cout << "??||" << std::endl;
newNode->addChildren(transChildren);
std::cout << "Finished Non-Instantiated Template function " << functionName << std::endl;
return newNode;
}
functionName = concatSymbolTree(children[1]);
for (auto child: children)
std::cout << "Function child: " << child->getDataRef()->toString() << std::endl;
newNode = new NodeTree<ASTData>(name, ASTData(function, Symbol(functionName, true), typeFromTypeNode(children[0], scope, templateTypeReplacements)));
skipChildren.insert(0);
skipChildren.insert(1);
scope->getDataRef()->scope[functionName].push_back(newNode);
newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope);
scope = newNode;
// auto transChildren = transformChildren(children, skipChildren, scope, types);
// std::cout << functionName << " ";
// for (auto i : transChildren)
// std::cout << "||" << i->getDataRef()->toString() << "|| ";
// std::cout << "??||" << std::endl;
// newNode->addChildren(transChildren);
// return newNode;
std::cout << "finished function (kinda, not children) " << functionName << std::endl;
} else if (name == "code_block") {
newNode = new NodeTree<ASTData>(name, ASTData(code_block));
newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope);
scope = newNode;
} else if (name == "typed_parameter") {
//newNode = transform(children[1]); //Transform to get the identifier
std::string parameterName = concatSymbolTree(children[1]);
std::cout << "Doing typed parameter " << parameterName << std::endl;
//std::string typeString = concatSymbolTree(children[0]);//Get the type (left child) and set our new identifer to be that type
newNode = new NodeTree<ASTData>("identifier", ASTData(identifier, Symbol(parameterName, true), typeFromTypeNode(children[0], scope, templateTypeReplacements)));
scope->getDataRef()->scope[parameterName].push_back(newNode);
newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope);
std::cout << "Done doing typed_parameter " << parameterName << std::endl;
return newNode;
} else if (name == "boolean_expression" || name == "and_boolean_expression" || name == "bool_exp") {
//If this is an actual part of an expression, not just a premoted term
if (children.size() > 1) {
//We do children first so we can do appropriate scope searching with types (yay operator overloading!)
skipChildren.insert(1);
std::vector<NodeTree<ASTData>*> transformedChildren = transformChildren(children, skipChildren, scope, types, templateTypeReplacements);
std::string functionCallString = concatSymbolTree(children[1]);
NodeTree<ASTData>* function = doFunction(scope, functionCallString, transformedChildren, templateTypeReplacements);
if (function == NULL) {
std::cout << "scope lookup error! Could not find " << functionCallString << " in boolean stuff " << std::endl;
throw "LOOKUP ERROR: " + functionCallString;
}
newNode = function;
// newNode = new NodeTree<ASTData>(functionCallString, ASTData(function_call, function->getDataRef()->valueType));
// newNode->addChild(function); // First child of function call is a link to the function
// newNode->addChildren(transformedChildren);
} else {
//std::cout << children.size() << std::endl;
if (children.size() == 0)
return new NodeTree<ASTData>();
return transform(children[0], scope, types, templateTypeReplacements); //Just a promoted term, so do child
}
//Here's the order of ops stuff
} else if (name == "expression" || name == "shiftand" || name == "term" || name == "unarad" || name == "access_operation") {
//If this is an actual part of an expression, not just a premoted child
if (children.size() > 2) {
NodeTree<ASTData>* lhs = transform(children[0], scope, std::vector<Type>(), templateTypeReplacements); //LHS does not inherit types
NodeTree<ASTData>* rhs;
if (name == "access_operation") {
std::cout << "lhs is: " << lhs->getDataRef()->toString() << std::endl;
rhs = transform(children[2], lhs->getDataRef()->valueType->typeDefinition, types, templateTypeReplacements); //If an access operation, then the right side will be in the lhs's type's scope
}
else
rhs = transform(children[2], scope, types, templateTypeReplacements);
std::string functionCallName = concatSymbolTree(children[1]);
if (functionCallName == "[")
functionCallName = "[]"; //fudge the lookup of brackets because only one is at children[1] (the other is at children[3])
//std::cout << "scope lookup from expression or similar" << std::endl;
std::vector<NodeTree<ASTData>*> transformedChildren; transformedChildren.push_back(lhs); transformedChildren.push_back(rhs);
newNode = doFunction(scope, functionCallName, transformedChildren, templateTypeReplacements);
if (newNode == NULL) {
std::cout << "scope lookup error! Could not find " << functionCallName << " in expression " << std::endl;
throw "LOOKUP ERROR: " + functionCallName;
}
// //Set the value of this function call
if (newNode->getDataRef()->valueType == NULL && rhs->getDataRef()->valueType) {
std::cout << "The value type from doFunction was null! (for " << functionCallName << ")" << std::endl;
newNode->getDataRef()->valueType = rhs->getDataRef()->valueType;
}
//else
// newNode->getDataRef()->valueType = NULL;
std::cout << "function call to " << functionCallName << " - " << newNode->getName() << " is now " << newNode->getDataRef()->valueType << std::endl;
return newNode;
//skipChildren.insert(1);
} else if (children.size() == 2) {
//Is template instantiation
return findOrInstantiateFunctionTemplate(children, scope, types, templateTypeReplacements);
} else {
return transform(children[0], scope, types, templateTypeReplacements); //Just a promoted child, so do it instead
}
} else if (name == "factor") { //Do factor here, as it has all the weird unary operators
//If this is an actual part of an expression, not just a premoted child
//NO SUPPORT FOR CASTING YET
std::string funcName;
if (children.size() == 2) {
funcName = concatSymbolTree(children[0]);
NodeTree<ASTData>* param;
if (funcName == "*" || funcName == "&" || funcName == "++" || funcName == "--" || funcName == "-" || funcName == "!" || funcName == "~")
param = transform(children[1], scope, types, templateTypeReplacements);
else
funcName = concatSymbolTree(children[1]), param = transform(children[0], scope, types, templateTypeReplacements);
//std::cout << "scope lookup from factor" << std::endl;
std::vector<NodeTree<ASTData>*> transformedChildren; transformedChildren.push_back(param);
NodeTree<ASTData>* function = doFunction(scope, funcName, transformedChildren, templateTypeReplacements);
if (function == NULL) {
std::cout << "scope lookup error! Could not find " << funcName << " in factor " << std::endl;
throw "LOOKUP ERROR: " + funcName;
}
return function;
} else {
return transform(children[0], scope, types, templateTypeReplacements); //Just a promoted child, so do it instead
}
} else if (name == "statement") {
newNode = new NodeTree<ASTData>(name, ASTData(statement));
} else if (name == "if_statement") {
newNode = new NodeTree<ASTData>(name, ASTData(if_statement));
} else if (name == "while_loop") {
newNode = new NodeTree<ASTData>(name, ASTData(while_loop));
} else if (name == "for_loop") {
newNode = new NodeTree<ASTData>(name, ASTData(for_loop));
} else if (name == "return_statement") {
newNode = new NodeTree<ASTData>(name, ASTData(return_statement));
} else if (name == "assignment_statement") {
newNode = new NodeTree<ASTData>(name, ASTData(assignment_statement));
std::string assignFuncName = concatSymbolTree(children[1]);
if (assignFuncName == "=") {
newNode->addChild(transform(children[0], scope, types, templateTypeReplacements));
newNode->addChild(transform(children[2], scope, types, templateTypeReplacements));
} else {
//For assignments like += or *=, expand the syntatic sugar.
NodeTree<ASTData>* lhs = transform(children[0], scope, types, templateTypeReplacements);
NodeTree<ASTData>* rhs = transform(children[2], scope, types, templateTypeReplacements);
std::vector<NodeTree<ASTData>*> transformedChildren; transformedChildren.push_back(lhs); transformedChildren.push_back(rhs);
std::string functionName = assignFuncName.substr(0,1);
NodeTree<ASTData>* operatorCall = doFunction(scope, functionName, transformedChildren, templateTypeReplacements);
if (operatorCall == NULL) {
std::cout << "scope lookup error! Could not find " << functionName << " in assignment_statement " << std::endl;
throw "LOOKUP ERROR: " + functionName;
}
newNode->addChild(lhs);
newNode->addChild(operatorCall);
}
return newNode;
} else if (name == "declaration_statement") {
newNode = new NodeTree<ASTData>(name, ASTData(declaration_statement));
// NodeTree<ASTData>* newIdentifier = transform(children[1], scope); //Transform the identifier
// newIdentifier->getDataRef()->valueType = Type(concatSymbolTree(children[0]));//set the type of the identifier
std::string newIdentifierStr = concatSymbolTree(children[1]);
Type* identifierType = typeFromTypeNode(children[0], scope, templateTypeReplacements);
std::cout << "Declaring an identifier " << newIdentifierStr << " to be of type " << identifierType->toString() << std::endl;
NodeTree<ASTData>* newIdentifier = new NodeTree<ASTData>("identifier", ASTData(identifier, Symbol(newIdentifierStr, true), identifierType));
scope->getDataRef()->scope[newIdentifierStr].push_back(newIdentifier);
newNode->getDataRef()->scope["~enclosing_scope"].push_back(scope);
newNode->addChild(newIdentifier);
if (children.size() > 2 && concatSymbolTree(children[2]) == ".") {
//A bit of a special case for declarations - if there's anything after just the normal 1 node declaration, it's either
//an expression that is assigned to the declaration (int a = 4;) or a member call (Object a.constructAThing())
//This code is a simplified version of the code in function_call with respect to access_operation.
//Note that in this case, what is lhs there is our newIdentifier here (the declaration of the left side of the access operation)
auto sliced = slice(children, 4, -1);
std::vector<NodeTree<ASTData>*> initPositionFuncParams = transformChildren(sliced, std::set<int>(), scope, types, templateTypeReplacements);
NodeTree<ASTData>* rhs = transform(children[3], identifierType->typeDefinition, mapNodesToTypes(initPositionFuncParams), templateTypeReplacements); //If an access operation, then the right side will be in the lhs's type's scope
std::vector<NodeTree<ASTData>*> transformedChildren; transformedChildren.push_back(newIdentifier); transformedChildren.push_back(rhs);
NodeTree<ASTData>* accessFuncCall = doFunction(scope, ".", transformedChildren, templateTypeReplacements);
accessFuncCall->getDataRef()->valueType = rhs->getDataRef()->valueType;
//Now we borrow a bit of code from function_call below to actually use our new accessFuncCall to setup a "initPosition" function call
//that will follow the identifier in this declaration node
std::string initPosFuncName = newIdentifierStr + "." + concatSymbolTree(children[3]);
NodeTree<ASTData>* initPositionFuncCall = new NodeTree<ASTData>(initPosFuncName, ASTData(function_call, Symbol(initPosFuncName, true)));
initPositionFuncCall->addChild(accessFuncCall);
initPositionFuncCall->getDataRef()->valueType = accessFuncCall->getDataRef()->valueType;
initPositionFuncCall->addChildren(initPositionFuncParams);
newNode->addChild(initPositionFuncCall);
return newNode;
}
skipChildren.insert(0); //These, the type and the identifier, have been taken care of.
skipChildren.insert(1);
newNode->addChildren(transformChildren(children, skipChildren, scope, types, templateTypeReplacements));
return newNode;
} else if (name == "if_comp") {
newNode = new NodeTree<ASTData>(name, ASTData(if_comp));
newNode->addChild(new NodeTree<ASTData>("identifier", ASTData(identifier, Symbol(concatSymbolTree(children[0]),true))));
skipChildren.insert(0); //Don't do the identifier. The identifier lookup will fail. That's why we do it here.
} else if (name == "simple_passthrough") {
newNode = new NodeTree<ASTData>(name, ASTData(simple_passthrough));
} else if (name == "function_call") {
std::string functionCallName = concatSymbolTree(children[0]);
newNode = new NodeTree<ASTData>(functionCallName, ASTData(function_call, Symbol(functionCallName, true)));
skipChildren.insert(0);
std::vector<NodeTree<ASTData>*> transformedChildren = transformChildren(children, skipChildren, scope, types, templateTypeReplacements);
std::cout << "scope lookup from function_call: " << functionCallName << std::endl;
for (auto i : children)
std::cout << i << " : " << i->getName() << " : " << i->getDataRef()->getName() << std::endl;
NodeTree<ASTData>* function = transform(children[0], scope, mapNodesToTypes(transformedChildren), templateTypeReplacements);
std::cout << "The thing: " << function << " : " << function->getName() << std::endl;
for (auto i : function->getChildren())
std::cout << i->getName() << " ";
std::cout << std::endl;
newNode->addChild(function);
newNode->getDataRef()->valueType = function->getDataRef()->valueType;
newNode->addChildren(transformedChildren);
return newNode;
} else if (name == "parameter") {
return transform(children[0], scope, types, templateTypeReplacements); //Don't need a parameter node, just the value
} else if (name == "type") {
std::string theConcat = concatSymbolTree(from); //We have no symbol, so this will concat our children
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(theConcat, true), typeFromTypeNode(from, scope, templateTypeReplacements)));
} else if (name == "number") {
return transform(children[0], scope, types, templateTypeReplacements);
} else if (name == "integer") {
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(concatSymbolTree(from), true), new Type(integer)));
} else if (name == "floating_literal") {
std::string literal = concatSymbolTree(from);
ValueType type = double_percision;
if (literal.back() == 'f') {
literal = literal.substr(0, literal.length()-1);
type = floating;
} else if (literal.back() == 'd') {
literal = literal.substr(0, literal.length()-1);
type = double_percision;
}
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(literal, true), new Type(type)));
} else if (name == "char") { //Is this correct? This might be a useless old thing
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 1))); //Indirection of 1 for array
} else if (name == "string" || name == "triple_quoted_string") {
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 1))); //Indirection of 1 for array
} else if (name == "character") {
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 0))); //Indirection of 0 for character
} else if (name == "bool") {
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(boolean, 0))); //Indirection of 0 for character
} else if (name == "AmbiguityPackOuter" || name == "AmbiguityPackInner") {
std::cout << "///////////////////////////////////////////////////////////////////////////////" << std::endl;
std::cout << "Ambigious program when parsed by this grammer! This is a bug, please report it." << std::endl;
std::cout << "///////////////////////////////////////////////////////////////////////////////" << std::endl;
throw "Ambigious parse!";
} else {
// Should get rid of this eventually. Right now it handles cases like sign, alpha, a comma, etc
std::cout << "Unhandled syntax node: " << name << std::endl;
return new NodeTree<ASTData>();
}
//Do all children but the ones we skip
newNode->addChildren(transformChildren(children, skipChildren, scope, types, templateTypeReplacements));
return newNode;
}
//We use this functionality a lot at different places
std::vector<NodeTree<ASTData>*> ASTTransformation::transformChildren(std::vector<NodeTree<Symbol>*> children, std::set<int> skipChildren, NodeTree<ASTData>* scope, std::vector<Type> types, std::map<std::string, Type*> templateTypeReplacements) {
std::vector<NodeTree<ASTData>*> transformedChildren;
// In general, iterate through children and do them. Might not do this for all children.
for (int i = 0; i < children.size(); i++) {
if (skipChildren.find(i) == skipChildren.end()) {
NodeTree<ASTData>* transChild = transform(children[i], scope, types, templateTypeReplacements);
if (transChild->getDataRef()->type) //Only add the children that have a real ASTData::ASTType, that is, legit ASTData.
transformedChildren.push_back(transChild);
else
delete transChild;
}
}
return transformedChildren;
}
//Extract types from already transformed nodes
std::vector<Type> ASTTransformation::mapNodesToTypes(std::vector<NodeTree<ASTData>*> nodes) {
std::vector<Type> types;
for (auto i : nodes) {
std::cout << i->getDataRef()->toString() << std::endl;
types.push_back(*(i->getDataRef()->valueType));
}
return types;
}
//Simple way to extract strings from syntax trees. Used often for identifiers, strings, types
std::string ASTTransformation::concatSymbolTree(NodeTree<Symbol>* root) {
std::string concatString;
std::string ourValue = root->getDataRef()->getValue();
if (ourValue != "NoValue")
concatString += ourValue;
std::vector<NodeTree<Symbol>*> children = root->getChildren();
for (int i = 0; i < children.size(); i++) {
concatString += concatSymbolTree(children[i]);
}
return concatString;
}
//We pass in the actual children (parameters) to allow us to handle overloaded operator methods (where a parameter is actually the scope of the method)
NodeTree<ASTData>* ASTTransformation::doFunction(NodeTree<ASTData>* scope, std::string lookup, std::vector<NodeTree<ASTData>*> nodes, std::map<std::string, Type*> templateTypeReplacements) {
auto LLElementIterator = languageLevelOperators.find(lookup);
NodeTree<ASTData>* newNode;
if (LLElementIterator != languageLevelOperators.end()) {
std::cout << "Checking for early method level operator overload" << std::endl;
std::string lookupOp = "operator" + lookup;
for (auto i : nodes)
std::cout << i->getDataRef()->toString() << " ";
std::cout << std::endl;
NodeTree<ASTData>* operatorMethod = NULL;
if (nodes[0]->getDataRef()->valueType && nodes[0]->getDataRef()->valueType->typeDefinition)
operatorMethod = functionLookup(nodes[0]->getDataRef()->valueType->typeDefinition, lookupOp, mapNodesToTypes(slice(nodes,1,-1)));
if (operatorMethod) {
//Ok, so we construct
std::cout << "Early method level operator was found" << std::endl;
//return operatorMethod;
NodeTree<ASTData>* newNode = new NodeTree<ASTData>(lookupOp, ASTData(function_call, Symbol(lookupOp, true)));
NodeTree<ASTData>* dotFunctionCall = new NodeTree<ASTData>(".", ASTData(function_call, Symbol(".", true)));
dotFunctionCall->addChild(languageLevelOperators["."][0]); //function definition
dotFunctionCall->addChild(nodes[0]); // The object whose method we're calling
dotFunctionCall->addChild(operatorMethod); //The method we're calling
newNode->addChild(dotFunctionCall); // First child of function call is a link to the function definition
newNode->addChildren(slice(nodes, 1, -1)); //The rest of the parameters to the operator
//Set the value of this function call
newNode->getDataRef()->valueType = operatorMethod->getDataRef()->valueType;
return newNode;
}
std::cout << "Early method level operator was NOT found" << std::endl;
}
newNode = new NodeTree<ASTData>(lookup, ASTData(function_call, Symbol(lookup, true)));
NodeTree<ASTData>* function = functionLookup(scope, lookup, mapNodesToTypes(nodes));
newNode->addChild(function);
newNode->addChildren(nodes);
//Specially handle dereference and address of to assign the correct type
//We need some significant other type corrections here, maybe to the point of being their own function. (int + float, etc.)
for (auto i : nodes)
std::cout << i->getDataRef()->toString() << " ";
std::cout<<std::endl;
std::vector<Type> oldTypes = mapNodesToTypes(nodes);
if ((nodes.size() != 2 && lookup == "*") || lookup == "&" || lookup == "[]") {
Type* newType = oldTypes[0].clone();
if (lookup == "*" || lookup == "[]")
newType->decreaseIndirection();
else
newType->increaseIndirection();
newNode->getDataRef()->valueType = newType, std::cout << "Operator " + lookup << " is altering indirection from " << oldTypes[0].toString() << " to " << newType->toString() << std::endl;
} else {
newNode->getDataRef()->valueType = function->getDataRef()->valueType, std::cout << "Some other ||" << lookup << "||" << std::endl;
}
return newNode;
}
//Lookup a function that takes in parameters matching the types passed in
NodeTree<ASTData>* ASTTransformation::functionLookup(NodeTree<ASTData>* scope, std::string lookup, std::vector<Type> types) {
//We first check to see if it's one of the special reserved identifiers (only this, for now) and return early if it is.
auto LLElementIterator = languageLevelReservedWords.find(lookup);
if (LLElementIterator != languageLevelReservedWords.end()) {
std::cout << "found it at language level as reserved word." << std::endl;
return LLElementIterator->second[0];
}
//We search the languageLevelOperators to see if it's an operator. If so, we modifiy the lookup with a preceding "operator"
LLElementIterator = languageLevelOperators.find(lookup);
if (LLElementIterator != languageLevelOperators.end())
lookup = "operator" + lookup;
//Look up the name
std::vector<NodeTree<ASTData>*> possibleMatches = scopeLookup(scope, lookup);
std::cout << "Function lookup of " << lookup << " has " << possibleMatches.size() << " possible matches." << std::endl;
if (possibleMatches.size()) {
for (auto i : possibleMatches) {
//We're not looking for types
if (i->getDataRef()->type == type_def)
continue;
std::vector<NodeTree<ASTData>*> children = i->getChildren();
//We subtract one from the children to get the type size only if there is at least one child AND
// the last node is actually a body node, as it may not have been generated yet if we're in the body
//and this function is recursive or if this is a non-instantiated template function
int numTypes = (children.size() > 0 && children[children.size()-1]->getDataRef()->type == code_block) ? children.size()-1 : children.size();
if (types.size() != numTypes) {
std::cout << "Type sizes do not match between two " << lookup << "(" << types.size() << "," << numTypes << "), types are: ";
for (auto j : types)
std::cout << j.toString() << " ";
std::cout << std::endl;
std::cout << "Versus" << std::endl;
for (int j = 0; j < numTypes; j++) {
std::cout << " vs " << children[j]->getDataRef()->valueType->toString() << std::endl;
}
for (auto child: children)
std::cout << "\t" << child->getDataRef()->toString() << std::endl;
std::cout << std::endl;
continue;
}
bool typesMatch = true;
for (int j = 0; j < types.size(); j++) {
Type* tmpType = children[j]->getDataRef()->valueType;
//Don't worry if types don't match if it's a template type
// std::cout << "Checking for segfaults, we have" << std::endl;
// std::cout << types[j].toString() << std::endl;
// std::cout << tmpType->toString() << std::endl;
// std::cout << "Done!" << std::endl;
if (types[j] != *tmpType && tmpType->baseType != template_type_type) {
typesMatch = false;
std::cout << "Types do not match between two " << lookup << " " << types[j].toString();
std::cout << " vs " << children[j]->getDataRef()->valueType->toString() << std::endl;
break;
}
}
if (typesMatch)
return i;
}
}
std::cout << "could not find " << lookup << " in standard scopes, checking for operator" << std::endl;
//Note that we don't check for types. At some point we should, as we don't know how to add objects/structs without overloaded operators, etc
//Also, we've already searched for the element because this is also how we keep track of operator overloading
if (LLElementIterator != languageLevelOperators.end()) {
std::cout << "found it at language level as operator." << std::endl;
return LLElementIterator->second[0];
}
std::cout << "Did not find, returning NULL" << std::endl;
return NULL;
}
//Lookup class templates. It evaluates possible matches on traits
NodeTree<ASTData>* ASTTransformation::templateClassLookup(NodeTree<ASTData>* scope, std::string lookup, std::vector<Type*> templateInstantiationTypes) {
std::vector<NodeTree<ASTData>*> mostFittingTemplates;
int bestNumTraitsSatisfied = -1;
auto possibleMatches = scopeLookup(scope, lookup);
std::cout << "Template Class instantiation has " << possibleMatches.size() << " possible matches." << std::endl;
for (auto i : possibleMatches) {
NodeTree<Symbol>* templateSyntaxTree = i->getDataRef()->valueType->templateDefinition;
auto nameTraitsPairs = makeTemplateNameTraitPairs(templateSyntaxTree->getChildren()[0]);
//Check if sizes match between the placeholder and actual template types
if (nameTraitsPairs.size() != templateInstantiationTypes.size())
continue;
bool traitsEqual = true;
int typeIndex = 0;
int currentTraitsSatisfied = 0;
for (auto j : nameTraitsPairs) {
if (!subset(j.second, templateInstantiationTypes[typeIndex]->traits)) {
traitsEqual = false;
std::cout << "Traits not subset for " << j.first << " and " << templateInstantiationTypes[typeIndex]->toString() << ": ";
//std::cout << baseType << " " << indirection << " " << typeDefinition << " " << templateDefinition << " " << traits << ;
std::copy(j.second.begin(), j.second.end(), std::ostream_iterator<std::string>(std::cout, " "));
std::cout << " vs ";
std::copy(templateInstantiationTypes[typeIndex]->traits.begin(), templateInstantiationTypes[typeIndex]->traits.end(), std::ostream_iterator<std::string>(std::cout, " "));
std::cout << std::endl;
break;
} else {
std::cout << "Traits ARE subset for " << j.first << " and " << templateInstantiationTypes[typeIndex]->toString() << ": ";
//std::cout << baseType << " " << indirection << " " << typeDefinition << " " << templateDefinition << " " << traits << ;
std::copy(j.second.begin(), j.second.end(), std::ostream_iterator<std::string>(std::cout, " "));
std::cout << " vs ";
std::copy(templateInstantiationTypes[typeIndex]->traits.begin(), templateInstantiationTypes[typeIndex]->traits.end(), std::ostream_iterator<std::string>(std::cout, " "));
std::cout << std::endl;
}
currentTraitsSatisfied += j.second.size();
typeIndex++;
}
if (!traitsEqual)
continue;
//See if this is a better match than the current best
if (currentTraitsSatisfied > bestNumTraitsSatisfied) {
mostFittingTemplates.clear();
std::cout << "Class satisfying " << currentTraitsSatisfied << " beats previous " << bestNumTraitsSatisfied << std::endl;
bestNumTraitsSatisfied = currentTraitsSatisfied;
} else if (currentTraitsSatisfied < bestNumTraitsSatisfied)
continue;
mostFittingTemplates.push_back(i);
std::cout << "Current class fits, satisfying " << currentTraitsSatisfied << " traits" << std::endl;
}
if (!mostFittingTemplates.size()) {
std::cout << "No template classes fit for " << lookup << "!" << std::endl;
throw "No matching template classes";
} else if (mostFittingTemplates.size() > 1) {
std::cout << "Multiple template classes fit with equal number of traits satisfied for " << lookup << "!" << std::endl;
throw "Multiple matching template classes";
}
return mostFittingTemplates[0];
}
//Lookup function for template functions. It has some extra concerns compared to function lookup, namely traits
NodeTree<ASTData>* ASTTransformation::templateFunctionLookup(NodeTree<ASTData>* scope, std::string lookup, std::vector<Type*> templateInstantiationTypes, std::vector<Type> types) {
std::vector<NodeTree<ASTData>*> mostFittingTemplates;
int bestNumTraitsSatisfied = -1;
auto possibleMatches = scopeLookup(scope, lookup);
std::cout << "Template Function instantiation has " << possibleMatches.size() << " possible matches." << std::endl;
int index = 1;
for (auto i : possibleMatches) {
std::cout << "Possibility " << index++ << std::endl;
NodeTree<Symbol>* templateSyntaxTree = i->getDataRef()->valueType->templateDefinition;
if (!templateSyntaxTree) {
std::cout << "Not a template, skipping" << std::endl;
continue;
}
auto nameTraitsPairs = makeTemplateNameTraitPairs(templateSyntaxTree->getChildren()[0]);
//Check if sizes match between the placeholder and actual template types
if (nameTraitsPairs.size() != templateInstantiationTypes.size())
continue;
std::map<std::string, Type*> typeMap;
bool traitsEqual = true;
int typeIndex = 0;
int currentTraitsSatisfied = 0;
for (auto j : nameTraitsPairs) {
if (!subset(j.second, templateInstantiationTypes[typeIndex]->traits)) {
traitsEqual = false;
std::cout << "Traits not a subset for " << j.first << " and " << templateInstantiationTypes[typeIndex]->toString() << ": ";
std::copy(j.second.begin(), j.second.end(), std::ostream_iterator<std::string>(std::cout, " "));
std::cout << " vs ";
std::copy(templateInstantiationTypes[typeIndex]->traits.begin(), templateInstantiationTypes[typeIndex]->traits.end(), std::ostream_iterator<std::string>(std::cout, " "));
std::cout << std::endl;
break;
} else {
std::cout << "Traits ARE a subset for " << j.first << " and " << templateInstantiationTypes[typeIndex]->toString() << ": ";
std::copy(j.second.begin(), j.second.end(), std::ostream_iterator<std::string>(std::cout, " "));
std::cout << " vs ";
std::copy(templateInstantiationTypes[typeIndex]->traits.begin(), templateInstantiationTypes[typeIndex]->traits.end(), std::ostream_iterator<std::string>(std::cout, " "));
std::cout << std::endl;
}
//As we go, build up the typeMap for when we transform the parameters for parameter checking
typeMap[j.first] = templateInstantiationTypes[typeIndex];
currentTraitsSatisfied += j.second.size();
typeIndex++;
}
if (!traitsEqual)
continue;
std::vector<NodeTree<Symbol>*> functionParameters = slice(templateSyntaxTree->getChildren(), 3, -2, 2); //skip template, return type, name, intervening commas, and the code block
std::cout << functionParameters.size() << " " << types.size() << std::endl;
if (functionParameters.size() != types.size())
continue;
bool parameterTypesMatch = true;
for (int j = 0; j < functionParameters.size(); j++) {
auto paramType = typeFromTypeNode(functionParameters[j]->getChildren()[0], scope, typeMap);
std::cout << "Template param type: " << paramType->toString() << " : Needed Type: " << types[j].toString() << std::endl;
if (*paramType != types[j]) {
parameterTypesMatch = false;
std::cout << "Not equal template param: " << paramType->toString() << " : Needed Type actual param: " << types[j].toString() << std::endl;
break;
}
}
if (!parameterTypesMatch)
continue;
//See if this is a better match than the current best
if (currentTraitsSatisfied > bestNumTraitsSatisfied) {
mostFittingTemplates.clear();
std::cout << "Function satisfying " << currentTraitsSatisfied << " beats previous " << bestNumTraitsSatisfied << std::endl;
bestNumTraitsSatisfied = currentTraitsSatisfied;
} else if (currentTraitsSatisfied < bestNumTraitsSatisfied)
continue;
mostFittingTemplates.push_back(i);
std::cout << "Current function fits, satisfying " << currentTraitsSatisfied << " traits" << std::endl;
}
if (!mostFittingTemplates.size()) {
std::cout << "No template functions fit for " << lookup << "!" << std::endl;
throw "No matching template functions";
} else if (mostFittingTemplates.size() > 1) {
std::cout << "Multiple template functions fit with equal number of traits satisfied for " << lookup << "!" << std::endl;
throw "Multiple matching template functions";
}
return mostFittingTemplates[0];
}
//Extract pairs of type names and traits
std::vector<std::pair<std::string, std::set<std::string>>> ASTTransformation::makeTemplateNameTraitPairs(NodeTree<Symbol>* templateNode) {
std::vector<NodeTree<Symbol>*> templateParams = slice(templateNode->getChildren(), 1, -2, 2); //Skip <, >, and interveaning commas
std::vector<std::pair<std::string, std::set<std::string>>> typePairs;
for (auto i : templateParams) {
if (i->getChildren().size() > 1)
typePairs.push_back(std::make_pair(concatSymbolTree(i->getChildren()[0]), parseTraits(i->getChildren()[1])));
else
typePairs.push_back(std::make_pair(concatSymbolTree(i->getChildren()[0]), std::set<std::string>()));
}
return typePairs;
}
std::map<std::string, Type*> ASTTransformation::makeTemplateFunctionTypeMap(NodeTree<Symbol>* templateNode, std::vector<Type*> types) {
auto typePairs = makeTemplateNameTraitPairs(templateNode);
std::map<std::string, Type*> typeMap;
int typeIndex = 0;
std::cout << typePairs.size() << " " << types.size() << std::endl;
for (auto i : typePairs) {
typeMap[i.first] = types[typeIndex];
std::cout << "Mapping " << i.first << " to " << types[typeIndex]->toString() << std::endl;
typeIndex++;
}
return typeMap;
}
// We need recursion protection
std::vector<NodeTree<ASTData>*> ASTTransformation::scopeLookup(NodeTree<ASTData>* scope, std::string lookup, bool includeModules) {
return scopeLookup(scope, lookup, includeModules, std::vector<NodeTree<ASTData>*>());
}
std::vector<NodeTree<ASTData>*> ASTTransformation::scopeLookup(NodeTree<ASTData>* scope, std::string lookup, bool includeModules, std::vector<NodeTree<ASTData>*> visited) {
std::cout << "Scp[e looking up " << lookup << std::endl;
// Don't visit this node again when looking for the smae lookup. Note that we don't prevent coming back for the scope operator, as that should be able to come back.
visited.push_back(scope);
//We first check to see if it's one of the special reserved identifiers (only this, for now) and return early if it is.
auto LLElementIterator = languageLevelReservedWords.find(lookup);
if (LLElementIterator != languageLevelReservedWords.end()) {
std::cout << "found it at language level as reserved word." << std::endl;
return LLElementIterator->second;
}
std::vector<NodeTree<ASTData>*> matches;
// First, we check for scope operator (::) but only if occurs before a "<" as this would signal the beginning of a template instatiation inside type
// If we find it, we look up the left side of the :: and then use the resuts as the scope for looking up the right side, recursively.
size_t scopeOpPos = lookup.find("::");
size_t angleBrktPos = lookup.find("<");
if (scopeOpPos != std::string::npos && (angleBrktPos == std::string::npos || scopeOpPos < angleBrktPos)) {
std::cout << "Has :: operator, doing left then right" << std::endl;
for (auto scopeMatch : scopeLookup(scope, strSlice(lookup, 0, scopeOpPos), true)) {
std::cout << "Trying right side with found left side " << scopeMatch->getDataRef()->toString() << std::endl;
auto addMatches = scopeLookup(scopeMatch, strSlice(lookup, scopeOpPos+2, -1), includeModules);
matches.insert(matches.end(), addMatches.begin(), addMatches.end());
}
return matches;
}
std::map<std::string, std::vector<NodeTree<ASTData>*>> scopeMap = scope->getDataRef()->scope;
auto possibleMatches = scopeMap.find(lookup);
if (possibleMatches != scopeMap.end()) {
for (auto i : possibleMatches->second)
if (includeModules || i->getName() != "translation_unit")
matches.push_back(i);
std::cout << "Found " << possibleMatches->second.size() << " match(s) at " << scope->getDataRef()->toString() << std::endl;
}
// Add results from our enclosing scope, if it exists.
// If it doesn't we should be at the top of a translation unit, and we should check the scope of import statements.
auto enclosingIterator = scopeMap.find("~enclosing_scope");
if (enclosingIterator != scopeMap.end()) {
std::vector<NodeTree<ASTData>*> upperResult = scopeLookup(enclosingIterator->second[0], lookup, includeModules, visited);
matches.insert(matches.end(), upperResult.begin(), upperResult.end());
} else {
// Ok, let's iterate through and check for imports
for (auto child : scope->getChildren()) {
if (child->getDataRef()->type == import) {
auto importScope = child->getDataRef()->scope;
// Check if there is a match named explicily in the import's scope (i.e. looking for a and the import is import somefile: a;)
// If so, add it's members to our matches
auto importLookupItr = importScope.find(lookup);
if (importLookupItr != importScope.end()) {
auto addMatches = importLookupItr->second;
matches.insert(matches.end(), addMatches.begin(), addMatches.end());
}
// Check if there is an uncionditional import to follow (i.e. import somefile: *;)
// If so, continue the search in that scope
auto importStarItr = importScope.find("*");
if (importStarItr != importScope.end()) {
auto addMatches = scopeLookup(importStarItr->second[0], lookup, includeModules, visited);
matches.insert(matches.end(), addMatches.begin(), addMatches.end());
}
}
}
}
return matches;
}
//Create a type from a syntax tree. This can get complicated with templates
Type* ASTTransformation::typeFromTypeNode(NodeTree<Symbol>* typeNode, NodeTree<ASTData>* scope, std::map<std::string, Type*> templateTypeReplacements) {
std::string typeIn = concatSymbolTree(typeNode);
int indirection = 0;
ValueType baseType;
NodeTree<ASTData>* typeDefinition = NULL;
std::set<std::string> traits;
while (typeIn[typeIn.size() - indirection - 1] == '*') indirection++;
std::string edited = strSlice(typeIn, 0, -(indirection + 1));
if (edited == "void")
baseType = void_type;
else if (edited == "bool")
baseType = boolean;
else if (edited == "int")
baseType = integer;
else if (edited == "float")
baseType = floating;
else if (edited == "double")
baseType = double_percision;
else if (edited == "char")
baseType = character;
else {
baseType = none;
auto possibleMatches = scopeLookup(scope, edited);
if (possibleMatches.size()) {
typeDefinition = possibleMatches[0];
traits = typeDefinition->getDataRef()->valueType->traits;
}
//So either this is an uninstatiated template class type, or this is literally a template type T, and we should get it from our
//templateTypeReplacements map. We try this first
if (templateTypeReplacements.find(edited) != templateTypeReplacements.end()) {
std::cout << "Template type! (" << edited << ")" << std::endl;
Type* templateTypeReplacement = templateTypeReplacements[edited]->clone();
templateTypeReplacement->modifyIndirection(indirection);
return templateTypeReplacement;
}
std::cout << edited << " was not found in templateTypeReplacements" << std::endl;
std::cout << "templateTypeReplacements consists of : ";
for (auto i : templateTypeReplacements)
std::cout << i.first << " ";
std::cout << std::endl;
// getChildren()[1] is \* because of pointer instead of template_inst
// To counter this, for every indirection we step down a level
for (int i = 0; i < indirection; i++)
typeNode = typeNode->getChildren()[0];
std::cout << possibleMatches.size() << " " << typeNode->getChildren().size() << std::endl;
if (typeNode->getChildren().size() > 1)
std::cout << typeNode->getChildren()[1]->getDataRef()->getName() << std::endl;
//If not, we better instantiate it and then add it to the highest (not current) scope
if (possibleMatches.size() == 0 && typeNode->getChildren().size() > 1 && typeNode->getChildren()[1]->getData().getName() == "template_inst") {
std::cout << "Template type: " << edited << " not yet instantiated" << std::endl;
//We pull out the replacement types first so that we can choose the correct possibly overloaded template
std::vector<NodeTree<Symbol>*> templateParamInstantiationNodes = slice(typeNode->getChildren()[1]->getChildren(), 1, -2, 2); //same
std::vector<Type*> templateParamInstantiationTypes;
std::string instTypeString = "";
for (int i = 0; i < templateParamInstantiationNodes.size(); i++) {
Type* instType = typeFromTypeNode(templateParamInstantiationNodes[i], scope, templateTypeReplacements);
templateParamInstantiationTypes.push_back(instType);
instTypeString += (instTypeString == "") ? instType->toString(false) : "," + instType->toString(false);
}
//Finish creating the new name for this instantiation
std::string classNameWithoutTemplate = concatSymbolTree(typeNode->getChildren()[0]);
std::string fullyInstantiatedName = classNameWithoutTemplate + "<" + instTypeString + ">";
// Recheck for prior definition here, now that we have the true name.
possibleMatches = scopeLookup(scope, fullyInstantiatedName);
if (possibleMatches.size()) {
typeDefinition = possibleMatches[0];
traits = typeDefinition->getDataRef()->valueType->traits;
std::cout << "Found already instantiated template of " << fullyInstantiatedName << " at second check" << std::endl;
} else {
std::cout << "Did not find already instantiated template of " << fullyInstantiatedName << " at second check" << std::endl;
//Look up this template's plain definition. It's type has the syntax tree that we need to parse
NodeTree<ASTData>* templateDefinition = templateClassLookup(scope, concatSymbolTree(typeNode->getChildren()[0]), templateParamInstantiationTypes);
if (templateDefinition == NULL)
std::cout << "Template definition is null!" << std::endl;
else
std::cout << "Template definition is not null!" << std::endl;
NodeTree<Symbol>* templateSyntaxTree = templateDefinition->getDataRef()->valueType->templateDefinition;
//Create a new map of template type names to actual types.
std::vector<NodeTree<Symbol>*> templateParamPlaceholderNodes = slice(templateSyntaxTree->getChildren()[0]->getChildren(), 1, -2, 2); //Don't get beginning or end for < or >, skip commas in the middle
std::map<std::string, Type*> newTemplateTypeReplacement;
for (int i = 0; i < templateParamInstantiationTypes.size(); i++)
newTemplateTypeReplacement[concatSymbolTree(templateParamPlaceholderNodes[i])] = templateParamInstantiationTypes[i];
typeDefinition = new NodeTree<ASTData>("type_def", ASTData(type_def, Symbol(fullyInstantiatedName, true, fullyInstantiatedName)));
traits = templateDefinition->getDataRef()->valueType->traits; // We have the same traits as the template definition
Type* selfType = new Type(typeDefinition, traits); // Type is self-referential since this is the definition.
typeDefinition->getDataRef()->valueType = selfType;
//Note that we're adding to the current top scope. This makes it more efficient by preventing multiple instantiation and should not cause any problems
//It also makes sure it gets generated in the right place
std::cout << "Adding to top scope and template's origional scope with fullyInstantiatedName " << fullyInstantiatedName << std::endl;
topScope->getDataRef()->scope[fullyInstantiatedName].push_back(typeDefinition);
topScope->addChild(typeDefinition); //Add this object the the highest scope's
//NodeTree<ASTData>* templateHighScope = templateDefinition->getDataRef()->scope["~enclosing_scope"][0];
//if (topScope != templateHighScope)
//templateHighScope->getDataRef()->scope[fullyInstantiatedName].push_back(typeDefinition);
// We put it in the scope of the template so that it can find itself (as it's scope is its template definition)
templateDefinition->getDataRef()->scope[fullyInstantiatedName].push_back(typeDefinition);
//Note that the instantiated template's scope is the template's definition.
typeDefinition->getDataRef()->scope["~enclosing_scope"].push_back(templateDefinition);
// We only partially instantiate templates no matter what now
// They are all fully instantiated in the loop at the end of the 4th pass
// This is done for code simplicity and so that that loop can do template class methods
// that instantiate other templates that instantiate other templates while still retaining the
// deferred method allowing us to correctly instantiate multiple levels of mututally recursive definitions.
selfType->templateDefinition = templateSyntaxTree; //We're going to still need this when we finish instantiating
selfType->templateTypeReplacement = newTemplateTypeReplacement; //Save the types for use when this is fully instantiated in pass 4
secondPassDoClassInsides(typeDefinition, templateSyntaxTree->getChildren(), newTemplateTypeReplacement); //Use these types when instantiating data members
}
} else if (possibleMatches.size() == 0) {
std::cout << "Could not find type " << edited << ", returning NULL" << std::endl;
return NULL;
} else {
std::cout << "Type: " << edited << " already instantiated with " << typeDefinition << ", will be " << Type(baseType, typeDefinition, indirection, traits).toString() << std::endl;
}
}
Type* toReturn = new Type(baseType, typeDefinition, indirection, traits);
std::cout << "Returning type " << toReturn->toString() << std::endl;
return toReturn;
}
NodeTree<ASTData>* ASTTransformation::findOrInstantiateFunctionTemplate(std::vector<NodeTree<Symbol>*> children, NodeTree<ASTData>* scope, std::vector<Type> types, std::map<std::string, Type*> templateTypeReplacements) {
//First look to see if we can find this already instantiated
std::cout << "\n\nFinding or instantiating templated function\n\n" << std::endl;
std::string functionName = concatSymbolTree(children[0]);
auto unsliced = children[1]->getChildren();
std::vector<NodeTree<Symbol>*> templateParamInstantiationNodes = slice(unsliced, 1 , -2, 2);//skip <, >, and commas
std::string instTypeString = "";
std::vector<Type*> templateActualTypes;
for (int i = 0; i < templateParamInstantiationNodes.size(); i++) {
Type* instType = typeFromTypeNode(templateParamInstantiationNodes[i],scope, templateTypeReplacements);
instTypeString += (instTypeString == "" ? instType->toString() : "," + instType->toString());
templateActualTypes.push_back(instType);
}
std::cout << "Size: " << templateParamInstantiationNodes.size() << std::endl;
std::string fullyInstantiatedName = functionName + "<" + instTypeString + ">";
std::cout << "Looking for " << fullyInstantiatedName << std::endl;
std::cout << "Types are : ";
for (auto i : types)
std::cout << " " << i.toString();
std::cout << std::endl;
NodeTree<ASTData>* instantiatedFunction = functionLookup(scope, fullyInstantiatedName, types);
//If it already exists, return it
if (instantiatedFunction) {
std::cout << fullyInstantiatedName << " already exists! Returning" << std::endl;
return instantiatedFunction;
} else {
instantiatedFunction = functionLookup(topScope, fullyInstantiatedName, types);
if (instantiatedFunction) {
std::cout << fullyInstantiatedName << "already exists! Found in TopScope" << std::endl;
return instantiatedFunction;
}
std::cout << fullyInstantiatedName << " does NOT exist" << std::endl;
}
//Otherwise, we're going to instantiate it
//Find the template definitions
NodeTree<ASTData>* templateDefinition = templateFunctionLookup(scope, functionName, templateActualTypes, types);
if (templateDefinition == NULL) {
std::cout << functionName << " search turned up null, returing null" << std::endl;
return NULL;
}
NodeTree<Symbol>* templateSyntaxTree = templateDefinition->getDataRef()->valueType->templateDefinition;
// Makes a map between the names of the template placeholder parameters and the provided types
std::map<std::string, Type*> newTemplateTypeReplacement = makeTemplateFunctionTypeMap(templateSyntaxTree->getChildren()[0], templateActualTypes);
std::vector<NodeTree<Symbol>*> templateChildren = templateSyntaxTree->getChildren();
for (int i = 0; i < templateChildren.size(); i++)
std::cout << ", " << i << " : " << templateChildren[i]->getDataRef()->getName();
std::cout << std::endl;
instantiatedFunction = new NodeTree<ASTData>("function", ASTData(function, Symbol(fullyInstantiatedName, true), typeFromTypeNode(templateChildren[1], scope, newTemplateTypeReplacement)));
std::set<int> skipChildren;
skipChildren.insert(0);
skipChildren.insert(1);
skipChildren.insert(2);
//scope->getDataRef()->scope[fullyInstantiatedName].push_back(instantiatedFunction);
instantiatedFunction->getDataRef()->scope["~enclosing_scope"].push_back(templateDefinition->getDataRef()->scope["~enclosing_scope"][0]); //Instantiated Template Function's scope is it's template's definition's scope
topScope->getDataRef()->scope[fullyInstantiatedName].push_back(instantiatedFunction);
topScope->addChild(instantiatedFunction); //Add this object the the highest scope's
std::cout << "About to do children of " << functionName << " to " << fullyInstantiatedName << std::endl;
instantiatedFunction->addChildren(transformChildren(templateSyntaxTree->getChildren(), skipChildren, instantiatedFunction, std::vector<Type>(), newTemplateTypeReplacement));
std::cout << "Fully Instantiated function " << functionName << " to " << fullyInstantiatedName << std::endl;
return instantiatedFunction;
}