Files
kraken/small_demo/small_test.kp
2022-05-07 16:09:16 -04:00

155 lines
9.6 KiB
Plaintext

((wrap (vau root_env (quote)
((wrap (vau (let1)
(let1 lambda (vau se (p b1) (wrap (eval (array vau p b1) se)))
(let1 current-env (vau de () de)
(let1 cons (lambda (h t) (concat (array h) t))
(let1 Y (lambda (f3)
((lambda (x1) (x1 x1))
(lambda (x2) (f3 (lambda (& y) (lapply (x2 x2) y))))))
(let1 vY (lambda (f)
((lambda (x3) (x3 x3))
(lambda (x4) (f (vau de1 (& y) (vapply (x4 x4) y de1))))))
(let1 let (vY (lambda (recurse) (vau de2 (vs b) (cond (= (len vs) 0) (eval b de2)
true (vapply let1 (array (idx vs 0) (idx vs 1) (array recurse (slice vs 2 -1) b)) de2)))))
(let (
lcompose (lambda (g f) (lambda (& args) (lapply g (array (lapply f args)))))
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
if (vau de (con than & else) (cond (eval con de) (eval than de)
(> (len else) 0) (eval (idx else 0) de)
true false))
map (lambda (f5 l5)
; now maybe errors on can't find helper?
(let (helper (rec-lambda recurse (f4 l4 n4 i4)
(cond (= i4 (len l4)) n4
(<= i4 (- (len l4) 4)) (recurse f4 l4 (concat n4 (array
(f4 (idx l4 (+ i4 0)))
(f4 (idx l4 (+ i4 1)))
(f4 (idx l4 (+ i4 2)))
(f4 (idx l4 (+ i4 3)))
)) (+ i4 4))
true (recurse f4 l4 (concat n4 (array (f4 (idx l4 i4)))) (+ i4 1)))))
(helper f5 l5 (array) 0)))
map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(cond (= i (len l)) n
(<= i (- (len l) 4)) (recurse f l (concat n (array
(f (+ i 0) (idx l (+ i 0)))
(f (+ i 1) (idx l (+ i 1)))
(f (+ i 2) (idx l (+ i 2)))
(f (+ i 3) (idx l (+ i 3)))
)) (+ i 4))
true (recurse f l (concat n (array (f i (idx l i)))) (+ i 1)))))
(helper f l (array) 0)))
filter_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(if (f i (idx l i)) (recurse f l (concat n (array (idx l i))) (+ i 1))
(recurse f l n (+ i 1))))))
(helper f l (array) 0)))
filter (lambda (f l) (filter_i (lambda (i x) (f x)) l))
not (lambda (x) (if x false true))
; Huge thanks to Oleg Kiselyov for his fantastic website
; http://okmij.org/ftp/Computation/fixed-point-combinators.html
Y* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (lambda (& x) (lapply (lapply li (p p)) x))) l))))
vY* (lambda (& l)
((lambda (u) (u u))
(lambda (p)
(map (lambda (li) (vau ide (& x) (vapply (lapply li (p p)) x ide))) l))))
let-rec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array Y*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
let-vrec (vau de (name_func body)
(let (names (filter_i (lambda (i x) (= 0 (% i 2))) name_func)
funcs (filter_i (lambda (i x) (= 1 (% i 2))) name_func)
overwrite_name (idx name_func (- (len name_func) 2)))
(eval (array let (concat (array overwrite_name (concat (array vY*) (map (lambda (f) (array lambda names f)) funcs)))
(lapply concat (map_i (lambda (i n) (array n (array idx overwrite_name i))) names)))
body) de)))
flat_map (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
flat_map_i (lambda (f l)
(let (helper (rec-lambda recurse (f l n i)
(if (= i (len l))
n
(recurse f l (concat n (f i (idx l i))) (+ i 1)))))
(helper f l (array) 0)))
; with all this, we make a destrucutring-capable let
let (let (
destructure_helper (rec-lambda recurse (vs i r)
(cond (= (len vs) i) r
(array? (idx vs i)) (let (bad_sym (str-to-symbol (str (idx vs i)))
;new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (slice (idx vs i) 1 -1))
new_vs (flat_map_i (lambda (i x) (array x (array idx bad_sym i))) (idx vs i))
)
(recurse (concat new_vs (slice vs (+ i 2) -1)) 0 (concat r (array bad_sym (idx vs (+ i 1))))))
true (recurse vs (+ i 2) (concat r (slice vs i (+ i 2))))
))) (vau de (vs b) (vapply let (array (destructure_helper vs 0 (array)) b) de)))
; and a destructuring-capable lambda!
only_symbols (rec-lambda recurse (a i) (cond (= i (len a)) true
(symbol? (idx a i)) (recurse a (+ i 1))
true false))
; Note that if macro_helper is inlined, the mapping lambdas will close over
; se, and then not be able to be taken in as values to the maps, and the vau
; will fail to partially evaluate away.
lambda (let (macro_helper (lambda (p b) (let (
sym_params (map (lambda (param) (if (symbol? param) param
(str-to-symbol (str param)))) p)
body (array let (flat_map_i (lambda (i x) (array (idx p i) x)) sym_params) b)
) (array vau sym_params body))))
(vau se (p b) (if (only_symbols p 0) (vapply lambda (array p b) se)
(wrap (eval (macro_helper p b) se)))))
; and rec-lambda - yes it's the same definition again
rec-lambda (vau se (n p b) (eval (array Y (array lambda (array n) (array lambda p b))) se))
nil (array)
or (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) false
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp 'tmp (recurse bs (+ i 1)))))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
and (let (macro_helper (rec-lambda recurse (bs i) (cond (= i (len bs)) true
(= (+ 1 i) (len bs)) (idx bs i)
true (array let (array 'tmp (idx bs i)) (array if 'tmp (recurse bs (+ i 1)) 'tmp)))))
(vau se (& bs) (eval (macro_helper bs 0) se)))
test17 (or false 1 "a" true)
test18 (and 1 "a" nil true)
monad (array 'write 1 "test_self_out2" (vau (written code) (array (or written code) test17 (or false nil 0) (and written code) test18 (and nil 0 false))))
)
monad
)
;(array 'write 1 "test_self_out2" (vau (written code) 7))
; end of all lets
))))))
; impl of let1
; this would be the macro style version (((
)) (vau de (s v b) (eval (array (array wrap (array vau (array s) b)) v) de)))
;)) (vau de (s v b) (eval (array (array vau (array s) b) (eval v de)) de)))
; impl of quote
)) (vau (x5) x5))