Files
kraken/src/CGenerator.cpp
2015-07-05 02:34:45 -04:00

1065 lines
63 KiB
C++

#include "CGenerator.h"
CGenerator::CGenerator() : generatorString("__C__") {
tabLevel = 0;
id = 0;
function_header = "fun_";
functionTypedefString = "";
functionTypedefStringPre = "";
}
CGenerator::~CGenerator() {
}
// Note the use of std::pair to hold two strings - the running string for the header file and the running string for the c file.
void CGenerator::generateCompSet(std::map<std::string, NodeTree<ASTData>*> ASTs, std::string outputName) {
//Generate an entire set of files
std::string buildString = "#!/bin/sh\ncc -g -std=c99 ";
std::cout << "\n\n =====GENERATE PASS===== \n\n" << std::endl;
std::cout << "\n\nGenerate pass for: " << outputName << std::endl;
buildString += outputName + ".c ";
std::ofstream outputCFile, outputHFile;
outputCFile.open(outputName + "/" + outputName + ".c");
outputHFile.open(outputName + "/" + outputName + ".h");
if (outputCFile.is_open() || outputHFile.is_open()) {
// Prequel common to all files
auto chPair = generateTranslationUnit(outputName, ASTs);
outputHFile << "#include <stdbool.h>\n#include <stdlib.h>\n#include <stdio.h>\n" << chPair.first;
outputCFile << "#include \"" + outputName + ".h\"\n\n" << chPair.second;
} else {
std::cerr << "Cannot open file " << outputName << ".c/h" << std::endl;
}
outputCFile.close();
outputHFile.close();
buildString += linkerString;
buildString += "-o " + outputName;
std::ofstream outputBuild;
outputBuild.open(outputName + "/" + split(outputName, '/').back() + ".sh");
outputBuild << buildString;
outputBuild.close();
std::cout << "DEFER DOUBLE STACK " << deferDoubleStack.size() << std::endl;
}
std::string CGenerator::tabs() {
std::string returnTabs;
for (int i = 0; i < tabLevel; i++)
returnTabs += "\t";
return returnTabs;
}
std::string CGenerator::getID() {
return intToString(id++);
}
std::string CGenerator::generateClassStruct(NodeTree<ASTData>* from) {
auto data = from->getData();
auto children = from->getChildren();
std::string objectString = "struct __struct_dummy_" + scopePrefix(from) + CifyName(data.symbol.getName()) + "__ {\n";
tabLevel++;
for (int i = 0; i < children.size(); i++) {
std::cout << children[i]->getName() << std::endl;
if (children[i]->getName() != "function")
objectString += tabs() + generate(children[i], nullptr).oneString() + "\n";
}
tabLevel--;
objectString += "};";
return objectString;
}
// This method recurseivly generates all aliases of some definition
std::string CGenerator::generateAliasChains(std::map<std::string, NodeTree<ASTData>*> ASTs, NodeTree<ASTData>* definition) {
std::string output;
for (auto trans : ASTs) {
for (auto i = trans.second->getDataRef()->scope.begin(); i != trans.second->getDataRef()->scope.end(); i++) {
for (auto declaration : i->second) {
auto declarationData = declaration->getDataRef();
if (declarationData->type == type_def
&& declarationData->valueType->typeDefinition != declaration
&& declarationData->valueType->typeDefinition == definition) {
output += "typedef " +
scopePrefix(definition) + CifyName(definition->getDataRef()->symbol.getName()) + " " +
scopePrefix(declaration) + CifyName(declarationData->symbol.getName()) + ";\n";
// Recursively add the ones that depend on this one
output += generateAliasChains(ASTs, declaration);
}
}
}
}
return output;
}
bool CGenerator::isUnderTranslationUnit(NodeTree<ASTData>* from, NodeTree<ASTData>* node) {
auto scope = from->getDataRef()->scope;
for (auto i : scope)
for (auto j : i.second)
if (j == node)
return true;
auto upper = scope.find("~enclosing_scope");
if (upper != scope.end())
return isUnderTranslationUnit(upper->second[0], node);
return false;
}
NodeTree<ASTData>* CGenerator::highestScope(NodeTree<ASTData>* node) {
auto it = node->getDataRef()->scope.find("~enclosing_scope");
while (it != node->getDataRef()->scope.end()) {
node = it->second[0];
it = node->getDataRef()->scope.find("~enclosing_scope");
}
return node;
}
// We do translation units in their own function so they can do the pariwise h/c stuff and regualr in function body generation does not
std::pair<std::string, std::string> CGenerator::generateTranslationUnit(std::string name, std::map<std::string, NodeTree<ASTData>*> ASTs) {
// We now pass in the entire map of ASTs and loop through them so that we generate out into a single file
std::string cOutput, hOutput;
// Ok, so we've got to do this in passes to preserve mututally recursive definitions.
//
// First Pass: All classes get "struct dummy_thing; typedef struct dummy_thing thing;".
// Also, other typedefs follow after their naming.
// Second Pass: All top level variable declarations
// Third Pass: Define all actual structs of a class, in correct order (done with posets)
// Fourth Pass: Declare all function prototypes (as functions may be mutually recursive too).
// (this includes object methods)
// Fifth Pass: Define all functions (including object methods).
// However, most of these do not actually have to be done as separate passes. First, second, fourth, and fifth
// are done simultanously, but append to different strings that are then concatinated properly, in order.
std::string importIncludes = "/**\n * Import Includes\n */\n\n";
std::string topLevelCPassthrough = "/**\n * Top Level C Passthrough\n */\n\n";
std::string variableExternDeclarations = "/**\n * Extern Variable Declarations \n */\n\n";
std::string plainTypedefs = "/**\n * Plain Typedefs\n */\n\n";
std::string variableDeclarations = "/**\n * Variable Declarations \n */\n\n";
std::string classStructs = "/**\n * Class Structs\n */\n\n";
std::string functionPrototypes = "/**\n * Function Prototypes\n */\n\n";
std::string functionDefinitions = "/**\n * Function Definitions\n */\n\n";
// There also exists functionTypedefString which is a member variable that keeps
// track of utility typedefs that allow our C type generation to be more sane
// it is emitted in the h file right before functionPrototypes
Poset<NodeTree<ASTData>*> typedefPoset;
for (auto trans : ASTs) {
auto children = trans.second->getChildren();
for (int i = 0; i < children.size(); i++) {
if (children[i]->getDataRef()->type == type_def) {
// If we're an alias type, continue. We handle those differently
if (children[i]->getDataRef()->valueType->typeDefinition != children[i])
continue;
typedefPoset.addVertex(children[i]); // We add this definition by itself just in case there are no dependencies.
// If it has dependencies, there's no harm in adding it here
// Go through every child in the class looking for declaration statements. For each of these that is not a primitive type
// we will add a dependency from this definition to that definition in the poset.
std::vector<NodeTree<ASTData>*> classChildren = children[i]->getChildren();
for (auto j : classChildren) {
if (j->getDataRef()->type == declaration_statement) {
Type* decType = j->getChildren()[0]->getDataRef()->valueType; // Type of the declaration
if (decType->typeDefinition && decType->getIndirection() == 0) // If this is a custom type and not a pointer
typedefPoset.addRelationship(children[i], decType->typeDefinition); // Add a dependency
}
}
}
}
}
//Now generate the typedef's in the correct, topological order
for (NodeTree<ASTData>* i : typedefPoset.getTopoSort())
classStructs += generateClassStruct(i) + "\n";
// Declare everything in translation unit scope here (now for ALL translation units). (allows stuff from other files, automatic forward declarations)
// Also, everything in all of the import's scopes
// Also c passthrough
for (auto trans : ASTs) {
// First go through and emit all the passthroughs, etc
for (auto i : trans.second->getChildren()) {
if (i->getDataRef()->type == if_comp)
topLevelCPassthrough += generate(i, nullptr).oneString();
}
for (auto i = trans.second->getDataRef()->scope.begin(); i != trans.second->getDataRef()->scope.end(); i++) {
for (auto declaration : i->second) {
std::vector<NodeTree<ASTData>*> decChildren = declaration->getChildren();
ASTData declarationData = declaration->getData();
switch(declarationData.type) {
case identifier:
{
auto parent = declaration->getDataRef()->scope["~enclosing_scope"][0];
if (parent->getChildren().size() == 1)
variableDeclarations += ValueTypeToCType(declarationData.valueType, scopePrefix(declaration) + declarationData.symbol.getName()) + "; /*identifier*/\n";
else
variableDeclarations += ValueTypeToCType(declarationData.valueType, generate(parent->getChildren()[0], nullptr, true, nullptr).oneString()) + " = " + generate(parent->getChildren()[1], nullptr, true, nullptr).oneString() + ";";
variableExternDeclarations += "extern " + ValueTypeToCType(declarationData.valueType, declarationData.symbol.getName()) + "; /*extern identifier*/\n";
break;
}
case function:
{
if (declarationData.valueType->baseType == template_type)
functionPrototypes += "/* template function " + declarationData.symbol.toString() + " */\n";
else if (decChildren.size() == 0) //Not a real function, must be a built in passthrough
functionPrototypes += "/* built in function: " + declarationData.symbol.toString() + " */\n";
else {
std::string nameDecoration, parameters;
if (declarationData.closedVariables.size())
parameters += closureStructType(declarationData.closedVariables) + "*";
for (int j = 0; j < decChildren.size()-1; j++) {
if (j > 0 || declarationData.closedVariables.size() )
parameters += ", ";
parameters += ValueTypeToCType(decChildren[j]->getData().valueType, generate(decChildren[j], nullptr).oneString());
nameDecoration += "_" + ValueTypeToCTypeDecoration(decChildren[j]->getData().valueType);
}
functionPrototypes += "\n" + ValueTypeToCType(declarationData.valueType->returnType, ((declarationData.symbol.getName() == "main") ? "" : function_header + scopePrefix(declaration)) +
CifyName(declarationData.symbol.getName() + nameDecoration)) +
"(" + parameters + "); /*func*/\n";
// generate function
std::cout << "Generating " << scopePrefix(declaration) +
CifyName(declarationData.symbol.getName()) << std::endl;
functionDefinitions += generate(declaration, nullptr).oneString();
}
}
break;
case type_def:
//type
plainTypedefs += "/*typedef " + declarationData.symbol.getName() + " */\n";
if (declarationData.valueType->baseType == template_type) {
plainTypedefs += "/* non instantiated template " + declarationData.symbol.getName() + " */";
} else if (declarationData.valueType->typeDefinition != declaration) {
if (declarationData.valueType->typeDefinition)
continue; // Aliases of objects are done with the thing it alises
// Otherwise, we're actually a renaming of a primitive, can generate here
plainTypedefs += "typedef " + ValueTypeToCType(declarationData.valueType,
scopePrefix(declaration) +
CifyName(declarationData.symbol.getName())) + ";\n";
plainTypedefs += generateAliasChains(ASTs, declaration);
} else {
plainTypedefs += "typedef struct __struct_dummy_" +
scopePrefix(declaration) + CifyName(declarationData.symbol.getName()) + "__ " +
scopePrefix(declaration) + CifyName(declarationData.symbol.getName()) + ";\n";
functionPrototypes += "/* Method Prototypes for " + declarationData.symbol.getName() + " */\n";
// We use a seperate string for this because we only include it if this is the file we're defined in
std::string objectFunctionDefinitions = "/* Method Definitions for " + declarationData.symbol.getName() + " */\n";
for (int j = 0; j < decChildren.size(); j++) {
std::cout << decChildren[j]->getName() << std::endl;
if (decChildren[j]->getName() == "function"
&& decChildren[j]->getDataRef()->valueType->baseType != template_type) //If object method and not template
objectFunctionDefinitions += generateObjectMethod(declaration, decChildren[j], &functionPrototypes) + "\n";
}
// Add all aliases to the plain typedefs. This will add any alias that aliases to this object, and any alias that aliases to that, and so on
plainTypedefs += generateAliasChains(ASTs, declaration);
functionPrototypes += "/* Done with " + declarationData.symbol.getName() + " */\n";
// include methods
functionDefinitions += objectFunctionDefinitions + "/* Done with " + declarationData.symbol.getName() + " */\n";
}
break;
default:
//std::cout << "Declaration? named " << declaration->getName() << " of unknown type " << ASTData::ASTTypeToString(declarationData.type) << " in translation unit scope" << std::endl;
cOutput += "/*unknown declaration named " + declaration->getName() + "*/\n";
hOutput += "/*unknown declaration named " + declaration->getName() + "*/\n";
}
}
}
}
hOutput += plainTypedefs + importIncludes + topLevelCPassthrough + functionTypedefStringPre + variableExternDeclarations + classStructs + functionTypedefString + functionPrototypes;
cOutput += variableDeclarations + functionDefinitions;
return std::make_pair(hOutput, cOutput);
}
//The enclosing object is for when we're generating the inside of object methods. They allow us to check scope lookups against the object we're in
CCodeTriple CGenerator::generate(NodeTree<ASTData>* from, NodeTree<ASTData>* enclosingObject, bool justFuncName, NodeTree<ASTData>* enclosingFunction) {
ASTData data = from->getData();
std::vector<NodeTree<ASTData>*> children = from->getChildren();
//std::string output;
CCodeTriple output;
switch (data.type) {
case translation_unit:
{
// Should not happen! We do this in it's own function now!
std::cerr << "Trying to normal generate a translation unit! That's a nono! (" << from->getDataRef()->toString() << ")" << std::endl;
throw "That's not gonna work";
}
break;
case interpreter_directive:
//Do nothing
break;
case import:
return CCodeTriple("/* never reached import? */\n");
case identifier:
{
//but first, if we're this, we should just emit. (assuming enclosing object) (note that technically this would fall through, but for errors)
if (data.symbol.getName() == "this") {
if (enclosingObject)
return CCodeTriple("this");
else
std::cerr << "Error: this used in non-object scope" << std::endl;
}
//If we're in an object method, and our enclosing scope is that object, we're a member of the object and should use the this reference.
std::string preName;
std::string postName;
//std::string preName = "/*ident*/";
// check for this being a closed over variable
// first, get declaring function, if it exists
if (enclosingFunction) {
if (enclosingFunction->getDataRef()->closedVariables.size()) {
std::cout << "WHOH IS A CLOSER" << std::endl;
if (enclosingFunction->getDataRef()->closedVariables.find(from) != enclosingFunction->getDataRef()->closedVariables.end()) {
preName += "(*closed_variables->";
postName += ")";
}
}
}
if (enclosingObject && enclosingObject->getDataRef()->scope.find(data.symbol.getName()) != enclosingObject->getDataRef()->scope.end())
preName += "this->";
// we're scope prefixing EVERYTHING
return preName + scopePrefix(from) + CifyName(data.symbol.getName()) + postName; //Cifying does nothing if not an operator overload
}
case function:
{
if (data.valueType->baseType == template_type)
return "/* template function: " + data.symbol.getName() + " */";
// we push on a new vector to hold parameters that might need a destructor call
distructDoubleStack.push_back(std::vector<NodeTree<ASTData>*>());
std::string nameDecoration, parameters;
if (data.closedVariables.size())
parameters += closureStructType(data.closedVariables) + " *closed_variables";
for (int j = 0; j < children.size()-1; j++) {
if (j > 0 || data.closedVariables.size())
parameters += ", ";
parameters += ValueTypeToCType(children[j]->getData().valueType, generate(children[j], enclosingObject, justFuncName, enclosingFunction).oneString());
nameDecoration += "_" + ValueTypeToCTypeDecoration(children[j]->getData().valueType);
// add parameters to distructDoubleStack so that their destructors will be called at return (if they exist)
distructDoubleStack.back().push_back(children[j]);
}
// this is for using functions as values
if (justFuncName) {
std::string funcName;
if (data.symbol.getName() != "main")
funcName += function_header + scopePrefix(from);
funcName += CifyName(data.symbol.getName() + nameDecoration);
if (from->getDataRef()->closedVariables.size()) {
std::string tmpStruct = "closureStruct" + getID();
output.preValue += closureStructType(data.closedVariables) + " " + tmpStruct + " = {";
bool notFirst = false;
for (auto var : data.closedVariables) {
if (notFirst)
output.preValue += ", ";
notFirst = true;
std::string varName = var->getDataRef()->symbol.getName();
std::string preName;
if (enclosingObject && enclosingObject->getDataRef()->scope.find(varName) != enclosingObject->getDataRef()->scope.end())
preName += "this->";
varName = (varName == "this") ? varName : scopePrefix(var) + varName;
// so that we can close over things that have been closed over by an enclosing closure
output.preValue += "." + varName + " = &/*woo*/" + generate(var, enclosingObject, justFuncName, enclosingFunction).oneString() + "/*woo*/";
//output.preValue += "." + varName + " = &" + preName + varName;
}
output.preValue += "};\n";
output += "("+ ValueTypeToCType(data.valueType, "") +"){(void*)" + funcName + ", &" + tmpStruct + "}";
} else {
output += "("+ ValueTypeToCType(data.valueType, "") +"){" + funcName + ", NULL}";
}
} else {
// Note that we always wrap out child in {}, as we now allow one statement functions without a codeblock
output = "\n" + ValueTypeToCType(data.valueType->returnType, ((data.symbol.getName() == "main") ? "" : function_header + scopePrefix(from)) +
CifyName(data.symbol.getName() + nameDecoration)) + "(" + parameters + ") {\n" + generate(children[children.size()-1], enclosingObject, justFuncName, from).oneString();
output += emitDestructors(reverse(distructDoubleStack.back()), enclosingObject);
output += "}\n";
}
distructDoubleStack.pop_back();
return output;
}
case code_block:
{
output += "{\n";
tabLevel++;
// we push on a new vector to hold parameters that might need a destructor call
distructDoubleStack.push_back(std::vector<NodeTree<ASTData>*>());
// we push on a new vector to hold deferred statements
deferDoubleStack.push_back(std::vector<NodeTree<ASTData>*>());
for (int i = 0; i < children.size(); i++)
output += generate(children[i], enclosingObject, justFuncName, enclosingFunction).oneString();
// we pop off the vector and go through them in reverse emitting them
for (auto iter = deferDoubleStack.back().rbegin(); iter != deferDoubleStack.back().rend(); iter++)
output += generate(*iter, enclosingObject, justFuncName, enclosingFunction).oneString();
deferDoubleStack.pop_back();
output += emitDestructors(reverse(distructDoubleStack.back()), enclosingObject);
distructDoubleStack.pop_back();
tabLevel--;
output += tabs() + "}";
return output;
}
case expression:
output += " " + data.symbol.getName() + ", ";
case boolean_expression:
output += " " + data.symbol.getName() + " ";
case statement:
{
CCodeTriple stat = generate(children[0], enclosingObject, justFuncName, enclosingFunction);
return tabs() + stat.preValue + stat.value + ";\n" + stat.postValue ;
}
case if_statement:
output += "if (" + generate(children[0], enclosingObject, true, enclosingFunction) + ")\n\t";
// We have to see if the then statement is a regular single statement or a block.
// If it's a block, because it's also a statement a semicolon will be emitted even though
// we don't want it to be, as if (a) {b}; else {c}; is not legal C, but if (a) {b} else {c}; is.
if (children[1]->getChildren()[0]->getDataRef()->type == code_block) {
std::cout << "Then statement is a block, emitting the block not the statement so no trailing semicolon" << std::endl;
output += generate(children[1]->getChildren()[0], enclosingObject, justFuncName, enclosingFunction).oneString();
} else {
// ALSO we always emit blocks now, to handle cases like defer when several statements need to be
// run in C even though it is a single Kraken statement
std::cout << "Then statement is a simple statement, regular emitting the statement so trailing semicolon" << std::endl;
output += "{ " + generate(children[1], enclosingObject, justFuncName, enclosingFunction).oneString() + " }";
}
// Always emit blocks here too
if (children.size() > 2)
output += " else { " + generate(children[2], enclosingObject, justFuncName, enclosingFunction).oneString() + " }";
return output;
case while_loop:
{
// we push on a new vector to hold while stuff that might need a destructor call
loopDistructStackDepth.push(distructDoubleStack.size());
distructDoubleStack.push_back(std::vector<NodeTree<ASTData>*>());
// keep track of the current size of the deferDoubleStack so that statements that
// break or continue inside this loop can correctly emit all of the defers through
// all of the inbetween scopes
loopDeferStackDepth.push(deferDoubleStack.size());
// gotta do like this so that the preconditions can happen every loop
output += "while (1) {\n";
CCodeTriple condtition = generate(children[0], enclosingObject, true, enclosingFunction);
output += condtition.preValue;
output += "if (!( " + condtition.value + ")) break;\n";
output += condtition.postValue;
output += generate(children[1], enclosingObject, justFuncName, enclosingFunction).oneString();
output += emitDestructors(reverse(distructDoubleStack.back()),enclosingObject);
output += + "}";
distructDoubleStack.pop_back();
loopDistructStackDepth.pop();
// and pop it off again
loopDeferStackDepth.pop();
return output;
}
case for_loop:
{
// we push on a new vector to hold for stuff that might need a destructor call
loopDistructStackDepth.push(distructDoubleStack.size());
distructDoubleStack.push_back(std::vector<NodeTree<ASTData>*>());
// keep track of the current size of the deferDoubleStack so that statements that
// break or continue inside this loop can correctly emit all of the defers through
// all of the inbetween scopes
loopDeferStackDepth.push(deferDoubleStack.size());
//The strSlice's are there to get ride of an unwanted return and an unwanted semicolon(s)
std::string doUpdateName = "do_update" + getID();
// INITIALIZER
output += "{";
output += generate(children[0], enclosingObject, true, enclosingFunction).oneString();
output += "bool " + doUpdateName + " = false;\n";
output += "for (;;) {";
// UPDATE
output += "if (" + doUpdateName + ") {";
output += generate(children[2], enclosingObject, true, enclosingFunction).oneString();
output += "}\n";
output += doUpdateName + " = true;\n";
// CONDITION
// note that the postValue happens whether or not we break
CCodeTriple condition = generate(children[1], enclosingObject, true, enclosingFunction);
output += condition.preValue;
output += "if (!(" + condition.value + ")) {\n";
output += condition.postValue;
output += "break;\n}";
output += condition.postValue;
// BODY
output += generate(children[3], enclosingObject, justFuncName, enclosingFunction).oneString();
output += emitDestructors(reverse(distructDoubleStack.back()),enclosingObject);
output += "}";
output += "}";
distructDoubleStack.pop_back();
loopDistructStackDepth.pop();
// and pop it off again
loopDeferStackDepth.pop();
return output;
}
case return_statement:
{
// we pop off the vector and go through them in reverse emitting them, going
// through all of both arrays, as return will go through all scopes
for (auto topItr = deferDoubleStack.rbegin(); topItr != deferDoubleStack.rend(); topItr++)
for (auto iter = (*topItr).rbegin(); iter != (*topItr).rend(); iter++)
output += generate(*iter, enclosingObject, justFuncName, enclosingFunction).oneString();
std::string destructors = emitDestructors(reverse(flatten(distructDoubleStack)),enclosingObject);
if (children.size()) {
CCodeTriple expr = generate(children[0], enclosingObject, true, enclosingFunction);
output.preValue += expr.preValue;
std::string retTemp = "ret_temp" + getID();
output.preValue += ValueTypeToCType(children[0]->getDataRef()->valueType, retTemp) + ";\n";
if (methodExists(children[0]->getDataRef()->valueType, "copy_construct", std::vector<Type>{children[0]->getDataRef()->valueType->withIncreasedIndirection()}))
output.preValue += generateMethodIfExists(children[0]->getDataRef()->valueType, "copy_construct", "&"+retTemp + ", &" + expr.value, std::vector<Type>{children[0]->getDataRef()->valueType->withIncreasedIndirection()});
else
output.preValue += retTemp + " = " + expr.value + ";\n";
// move expr post to before return
output.value += expr.postValue;
output.value += destructors;
output.value += "return " + retTemp;
} else {
output.value += destructors;
output += "return";
}
return output;
}
case break_statement:
// handle everything that's been deferred all the way back to the loop's scope
for (int i = deferDoubleStack.size()-1; i >= loopDeferStackDepth.top(); i--)
for (auto iter = deferDoubleStack[i].rbegin(); iter != deferDoubleStack[i].rend(); iter++)
output += generate(*iter, enclosingObject, justFuncName, enclosingFunction).oneString();
// ok, emit destructors to where the loop ends
output += emitDestructors(reverse(flatten(slice(distructDoubleStack,loopDistructStackDepth.top(),-1))),enclosingObject);
return output + "break";
case continue_statement:
// handle everything that's been deferred all the way back to the loop's scope
for (int i = deferDoubleStack.size()-1; i >= loopDeferStackDepth.top(); i--)
for (auto iter = deferDoubleStack[i].rbegin(); iter != deferDoubleStack[i].rend(); iter++)
output += generate(*iter, enclosingObject, justFuncName, enclosingFunction).oneString();
// ok, emit destructors to where the loop ends
output += emitDestructors(reverse(flatten(slice(distructDoubleStack,loopDistructStackDepth.top(),-1))),enclosingObject);
return output + "continue";
case defer_statement:
deferDoubleStack.back().push_back(children[0]);
return CCodeTriple("/*defer " + generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString() + "*/");
case assignment_statement:
return generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString() + " = " + generate(children[1], enclosingObject, true, enclosingFunction);
case declaration_statement:
// adding declaration to the distructDoubleStack so that we can call their destructors when leaving scope (}, return, break, continue)
// but only if we're inside an actual doublestack
if ((distructDoubleStack.size()))
distructDoubleStack.back().push_back(children[0]);
if (children.size() == 1)
return ValueTypeToCType(children[0]->getData().valueType, generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString()) + ";";
else if (children[1]->getChildren().size() && children[1]->getChildren()[0]->getChildren().size() > 1
&& children[1]->getChildren()[0]->getChildren()[1] == children[0]) {
//That is, if we're a declaration with an init position call (Object a.construct())
//We can tell if our function call (children[1])'s access operation([0])'s lhs ([1]) is the thing we just declared (children[0])
// be sure to end value by passing oneString true
return ValueTypeToCType(children[0]->getData().valueType, generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString()) + "; " + generate(children[1], enclosingObject, true, enclosingFunction).oneString(true) + "/*Init Position Call*/";
} else {
// copy constructor if exists (even for non same types)
if (methodExists(children[0]->getDataRef()->valueType, "copy_construct", std::vector<Type>{children[1]->getDataRef()->valueType->withIncreasedIndirection()})) {
CCodeTriple toAssign = generate(children[1], enclosingObject, true, enclosingFunction);
std::string assignedTo = generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString();
output.value = toAssign.preValue;
output.value += ValueTypeToCType(children[0]->getData().valueType, assignedTo) + ";\n";
// we put the thing about to be copy constructed in a variable so we can for sure take its address
std::string toAssignTemp = "copy_construct_param" + getID();
output.value += ValueTypeToCType(children[1]->getData().valueType, toAssignTemp) + " = " + toAssign.value + ";\n";
output.value += generateMethodIfExists(children[0]->getDataRef()->valueType, "copy_construct", "&" + assignedTo + ", &" + toAssignTemp, std::vector<Type>{children[1]->getDataRef()->valueType->withIncreasedIndirection()}) + ";\n" + output.postValue;
output.value += toAssign.postValue;
return output;
} else {
return ValueTypeToCType(children[0]->getData().valueType, generate(children[0], enclosingObject, justFuncName, enclosingFunction).oneString()) + " = " + generate(children[1], enclosingObject, true, enclosingFunction) + ";";
}
}
case if_comp:
// Lol, this doesn't work because the string gets prefixed now
//if (generate(children[0], enclosingObject, enclosingFunction) == generatorString)
if (children[0]->getDataRef()->symbol.getName() == generatorString)
return generate(children[1], enclosingObject, justFuncName, enclosingFunction);
return CCodeTriple("");
case simple_passthrough:
{
// Stuff is bit more interesting now! XXX
std::string pre_passthrough, post_passthrough;
// Handle input/output parameters
if (children.front()->getDataRef()->type == passthrough_params) {
auto optParamAssignLists = children.front()->getChildren();
for (auto in_or_out : optParamAssignLists) {
for (auto assign : in_or_out->getChildren()) {
auto assignChildren = assign->getChildren();
if (in_or_out->getDataRef()->type == in_passthrough_params)
if (assignChildren.size() == 2)
pre_passthrough += ValueTypeToCType(assignChildren[0]->getDataRef()->valueType, assignChildren[1]->getDataRef()->symbol.getName()) + " = " + generate(assignChildren[0], enclosingObject, enclosingFunction).oneString() + ";\n";
else
pre_passthrough += ValueTypeToCType(assignChildren[0]->getDataRef()->valueType, assignChildren[0]->getDataRef()->symbol.getName()) + " = " + generate(assignChildren[0], enclosingObject, enclosingFunction).oneString() + ";\n";
else if (in_or_out->getDataRef()->type == out_passthrough_params)
if (assignChildren.size() == 2)
post_passthrough += generate(assignChildren[0], enclosingObject, justFuncName, enclosingFunction).oneString() + " = " + assignChildren[1]->getDataRef()->symbol.getName() + ";\n";
else
post_passthrough += generate(assignChildren[0], enclosingObject, justFuncName, enclosingFunction).oneString() + " = " + assignChildren[0]->getDataRef()->symbol.getName() + ";\n";
else
linkerString += " " + strSlice(generate(in_or_out, enclosingObject, justFuncName, enclosingFunction).oneString(), 1, -2) + " ";
}
}
}
// The actual passthrough string is the last child now, as we might
// have passthrough_params be the first child
// we don't generate, as that will escape the returns and we don't want that. We'll just grab the string
//return pre_passthrough + strSlice(generate(children.back(, enclosingFunction), enclosingObject, justFuncName).oneString(), 3, -4) + post_passthrough;
return pre_passthrough + strSlice(children.back()->getDataRef()->symbol.getName(), 3, -4) + post_passthrough;
}
case function_call:
{
//NOTE: The first (0th) child of a function call node is the declaration of the function
//Handle operators specially for now. Will later replace with
//Inlined functions in the standard library
// std::string name = data.symbol.getName();
// std::cout << name << " == " << children[0]->getData().symbol.getName() << std::endl;
std::string name = children[0]->getDataRef()->symbol.getName();
ASTType funcType = children[0]->getDataRef()->type;
// UGLLLLYYYY
// But we have these here because some stuff has to be moved out of the giant nested blocks below and this is the way to do it
CCodeTriple functionCallSource;
bool doClosureInstead = false;
//std::cout << "Doing function: " << name << std::endl;
//Test for special functions only if what we're testing is, indeed, the definition, not a function call that returns a callable function pointer
if (funcType == function) {
if (name == "++" || name == "--")
return generate(children[1], enclosingObject, true, enclosingFunction) + name;
if ( (name == "*" || name == "&" || name == "!" || name == "-" || name == "+" ) && children.size() == 2) //Is dereference, not multiplication, address-of, or other unary operator
return name + "(" + generate(children[1], enclosingObject, true, enclosingFunction) + ")";
if (name == "[]")
return "(" + generate(children[1], enclosingObject, true, enclosingFunction) + ")[" + generate(children[2],enclosingObject, true, enclosingFunction) + "]";
if (name == "+" || name == "-" || name == "*" || name == "/" || name == "==" || name == ">=" || name == "<=" || name == "!="
|| name == "<" || name == ">" || name == "%" || name == "=" || name == "+=" || name == "-=" || name == "*=" || name == "/=" || name == "||"
|| name == "&&") {
return "((" + generate(children[1], enclosingObject, true, enclosingFunction) + ")" + name + "(" + generate(children[2], enclosingObject, true, enclosingFunction) + "))";
} else if (name == "." || name == "->") {
if (children.size() == 1)
return "/*dot operation with one child*/" + generate(children[0], enclosingObject, true, enclosingFunction).oneString() + "/*end one child*/";
//If this is accessing an actual function, find the function in scope and take the appropriate action. Probabally an object method
if (children[2]->getDataRef()->type == function) {
std::string functionName = children[2]->getDataRef()->symbol.getName();
NodeTree<ASTData>* possibleObjectType = children[1]->getDataRef()->valueType->typeDefinition;
//If is an object method, generate it like one. Needs extension/modification for inheritence
if (possibleObjectType) {
NodeTree<ASTData>* unaliasedTypeDef = getMethodsObjectType(possibleObjectType, functionName);
if (unaliasedTypeDef) { //Test to see if the function's a member of this type_def, or if this is an alias, of the original type. Get this original type if it exists.
std::string nameDecoration;
std::vector<NodeTree<ASTData>*> functionDefChildren = children[2]->getChildren(); //The function def is the rhs of the access operation
std::cout << "Decorating (in access-should be object) " << name << " " << functionDefChildren.size() << std::endl;
for (int i = 0; i < (functionDefChildren.size() > 0 ? functionDefChildren.size()-1 : 0); i++)
nameDecoration += "_" + ValueTypeToCTypeDecoration(functionDefChildren[i]->getData().valueType);
// Note that we only add scoping to the object, as this specifies our member function too
/*HERE*/ return function_header + scopePrefix(unaliasedTypeDef) + CifyName(unaliasedTypeDef->getDataRef()->symbol.getName()) +"__" +
CifyName(functionName + nameDecoration) + "(" + (name == "." ? "&" : "") + generate(children[1], enclosingObject, true, enclosingFunction) + ",";
//The comma lets the upper function call know we already started the param list
//Note that we got here from a function call. We just pass up this special case and let them finish with the perentheses
} else {
std::cout << "Is not in scope or not type" << std::endl;
return "((" + generate(children[1], enclosingObject, true, enclosingFunction) + ")" + name + functionName + ")";
}
} else {
std::cout << "Is not in scope or not type" << std::endl;
return "((" + generate(children[1], enclosingObject, true, enclosingFunction) + ")" + name + functionName + ")";
}
} else {
//return "((" + generate(children[1], enclosingObject, enclosingFunction) + ")" + name + generate(children[2], enclosingObject, enclosingFunction) + ")";
return "((" + generate(children[1], enclosingObject, true, enclosingFunction) + ")" + name + generate(children[2], nullptr, true, enclosingFunction) + ")";
}
} else {
// this could a closure literal. sigh, I know.
if (children[0]->getDataRef()->closedVariables.size()) {
functionCallSource = generate(children[0], enclosingObject, true, enclosingFunction);
doClosureInstead = true;
} else {
//It's a normal function call, not a special one or a method or anything. Name decorate.
std::vector<NodeTree<ASTData>*> functionDefChildren = children[0]->getChildren();
std::cout << "Decorating (none-special)" << name << " " << functionDefChildren.size() << std::endl;
std::string nameDecoration;
for (int i = 0; i < (functionDefChildren.size() > 0 ? functionDefChildren.size()-1 : 0); i++)
nameDecoration += "_" + ValueTypeToCTypeDecoration(functionDefChildren[i]->getData().valueType);
// it is possible that this is an object method from inside a closure
// in which case, recover the enclosing object from this
bool addClosedOver = false;
if (enclosingFunction && enclosingFunction->getDataRef()->closedVariables.size()) {
for (auto closedVar : enclosingFunction->getDataRef()->closedVariables) {
if (closedVar->getDataRef()->symbol.getName() == "this") {
enclosingObject = closedVar->getDataRef()->valueType->typeDefinition;
addClosedOver = true;
}
}
}
//Check to see if we're inside of an object and this is a method call
bool isSelfObjectMethod = enclosingObject && contains(enclosingObject->getChildren(), children[0]);
if (isSelfObjectMethod) {
output += function_header + scopePrefix(children[0]) + CifyName(enclosingObject->getDataRef()->symbol.getName()) +"__";
output += CifyName(name + nameDecoration) + "(";
output += std::string(addClosedOver ? "(*closed_variables->this)" : "this") + (children.size() > 1 ? "," : "");
} else {
output += function_header + scopePrefix(children[0]) + CifyName(name + nameDecoration) + "(";
}
}
}
} else {
//This part handles cases where our definition isn't the function definition (that is, it is probabally the return from another function)
//It's probabally the result of an access function call (. or ->) to access an object method.
//OR a function value!
//
//THIS IS UUUUUGLLYYY too. We moved the closure part out to after the generation of the params becuase it needs to use them twice
functionCallSource = generate(children[0], enclosingObject, true, enclosingFunction);
if (functionCallSource.value[functionCallSource.value.size()-1] == ',') //If it's a member method, it's already started the parameter list.
output += children.size() > 1 ? functionCallSource : CCodeTriple(functionCallSource.preValue, functionCallSource.value.substr(0, functionCallSource.value.size()-1), functionCallSource.postValue);
else {
doClosureInstead = true;
}
}
CCodeTriple parameters;
// see if we should copy_construct all the parameters
for (int i = 1; i < children.size(); i++) { //children[0] is the declaration
if (methodExists(children[i]->getDataRef()->valueType, "copy_construct", std::vector<Type>{children[i]->getDataRef()->valueType->withIncreasedIndirection()})) {
std::string tmpParamName = "param" + getID();
CCodeTriple paramValue = generate(children[i], enclosingObject, true, enclosingFunction);
parameters.preValue += paramValue.preValue;
parameters.preValue += ValueTypeToCType(children[i]->getDataRef()->valueType, tmpParamName) + ";\n";
parameters.preValue += generateMethodIfExists(children[i]->getDataRef()->valueType, "copy_construct", "&"+tmpParamName + ", &" + paramValue.value, std::vector<Type>{children[i]->getDataRef()->valueType->withIncreasedIndirection()});
parameters.value += tmpParamName;
parameters.postValue += paramValue.postValue;
} else {
parameters += generate(children[i], enclosingObject, true, enclosingFunction);
}
if (i < children.size()-1)
parameters += ", ";
}
if (doClosureInstead) {
Type* funcType = children[0]->getDataRef()->valueType;
Type* retType = funcType->returnType;
bool doRet = retType->baseType != void_type || retType->getIndirection();
std::string tmpName = "functionValueTmp" + getID();
std::string retTmpName = "closureRetTemp" + getID();
output += CCodeTriple(parameters.preValue + functionCallSource.preValue + ValueTypeToCType(funcType, tmpName) + " = " + functionCallSource.value + ";\n"
+ (doRet ? ValueTypeToCType(retType, retTmpName) + ";\n" : "")
+ "if (" + tmpName + ".data) { " + (doRet ? (retTmpName + " =") : "") + " (("+ ValueTypeToCTypeDecoration(funcType,ClosureFunctionPointerTypeWithClosedParam) +") (" + tmpName + ".func))(" + tmpName + ".data" + (children.size() > 1 ? ", " : "") + parameters.value + "); }\n"
+ "else { " + (doRet ? (retTmpName + " = ") : "") + " (("+ ValueTypeToCTypeDecoration(funcType,ClosureFunctionPointerTypeWithoutClosedParam) +") (" + tmpName + ".func))(" + parameters.value + "); }\n",
(doRet ? retTmpName : ""),
parameters.postValue + functionCallSource.postValue);
} else {
output += parameters + ") ";
}
// see if we should add a destructer call to this postValue
Type* retType = children[0]->getDataRef()->valueType->returnType;
if (retType->baseType != void_type) {
// we always use return temps now :( (for psudo-pod objects that still have methods called on them, like range(1,3).for_each(...)
std::string retTempName = "return_temp" + getID();
output.preValue += ValueTypeToCType(retType, retTempName) + " = " + output.value + ";\n";
output.value = retTempName;
if (methodExists(retType, "destruct", std::vector<Type>())) {
output.postValue = generateMethodIfExists(retType, "destruct", "&"+retTempName, std::vector<Type>()) + ";\n" + output.postValue;
}
}
return output;
}
case value:
{
// ok, we now check for it being a string and escape all returns if it is (so that multiline strings work)
if (data.symbol.getName()[0] == '"') {
std::string innerString = strSlice(data.symbol.getName(), 0, 3) == "\"\"\""
? strSlice(data.symbol.getName(), 3, -4)
: strSlice(data.symbol.getName(), 1, -2);
std::string newStr;
for (auto character: innerString)
if (character == '\n')
newStr += "\\n";
else if (character == '"')
newStr += "\\\"";
else
newStr += character;
return "\"" + newStr + "\"";
}
return data.symbol.getName();
}
default:
std::cout << "Nothing!" << std::endl;
}
for (int i = 0; i < children.size(); i++)
output += generate(children[i], enclosingObject, justFuncName, enclosingFunction).oneString();
return output;
}
NodeTree<ASTData>* CGenerator::getMethodsObjectType(NodeTree<ASTData>* scope, std::string functionName) {
//check the thing
while (scope != scope->getDataRef()->valueType->typeDefinition) //type is an alias, follow it to the definition
scope = scope->getDataRef()->valueType->typeDefinition;
return (scope->getDataRef()->scope.find(functionName) != scope->getDataRef()->scope.end()) ? scope : NULL;
}
// Returns the function prototype in the out param and the full definition normally
std::string CGenerator::generateObjectMethod(NodeTree<ASTData>* enclosingObject, NodeTree<ASTData>* from, std::string *functionPrototype) {
distructDoubleStack.push_back(std::vector<NodeTree<ASTData>*>());
ASTData data = from->getData();
Type enclosingObjectType = *(enclosingObject->getDataRef()->valueType); //Copy a new type so we can turn it into a pointer if we need to
enclosingObjectType.increaseIndirection();
std::vector<NodeTree<ASTData>*> children = from->getChildren();
std::string nameDecoration, parameters;
if (!children.size()) {
//problem
std::cerr << " no children " << std::endl;
}
for (int i = 0; i < children.size()-1; i++) {
parameters += ", " + ValueTypeToCType(children[i]->getData().valueType, generate(children[i]).oneString());
nameDecoration += "_" + ValueTypeToCTypeDecoration(children[i]->getData().valueType);
distructDoubleStack.back().push_back(children[i]);
}
std::string functionSignature = "\n" + ValueTypeToCType(data.valueType->returnType, function_header + scopePrefix(from) + CifyName(enclosingObject->getDataRef()->symbol.getName()) +"__"
+ CifyName(data.symbol.getName()) + nameDecoration) + "(" + ValueTypeToCType(&enclosingObjectType, "this") + parameters + ")";
*functionPrototype += functionSignature + ";\n";
// Note that we always wrap out child in {}, as we now allow one statement functions without a codeblock
//
std::string output;
output += functionSignature + " {\n" + generate(children.back(), enclosingObject).oneString();
output += emitDestructors(reverse(distructDoubleStack.back()), enclosingObject);
output += "}\n"; //Pass in the object so we can properly handle access to member stuff
distructDoubleStack.pop_back();
return output;
}
NodeTree<ASTData>* CGenerator::getMethod(Type* type, std::string method, std::vector<Type> types) {
if (type->getIndirection())
return nullptr;
NodeTree<ASTData> *typeDefinition = type->typeDefinition;
if (typeDefinition) {
auto definitionItr = typeDefinition->getDataRef()->scope.find(method);
if (definitionItr != typeDefinition->getDataRef()->scope.end()) {
for (auto method : definitionItr->second) {
bool methodFits = true;
std::vector<Type> methodTypes = dereferenced(method->getDataRef()->valueType->parameterTypes);
if (types.size() != methodTypes.size())
continue;
for (int i = 0; i < types.size(); i++) {
if (types[i] != methodTypes[i]) {
methodFits = false;
break;
}
}
if (methodFits)
return method;
}
}
}
return nullptr;
}
bool CGenerator::methodExists(Type* type, std::string method, std::vector<Type> types) {
return getMethod(type, method, types) != nullptr;
}
std::string CGenerator::generateMethodIfExists(Type* type, std::string method, std::string parameter, std::vector<Type> methodTypes) {
NodeTree<ASTData> *methodDef = getMethod(type, method, methodTypes);
if (methodDef) {
NodeTree<ASTData> *typeDefinition = type->typeDefinition;
std::string nameDecoration;
for (Type *paramType : methodDef->getDataRef()->valueType->parameterTypes)
nameDecoration += "_" + ValueTypeToCTypeDecoration(paramType);
return function_header + scopePrefix(typeDefinition) + CifyName(typeDefinition->getDataRef()->symbol.getName()) + "__" + method + nameDecoration + "(" + parameter + ");\n";
}
return "";
}
std::string CGenerator::emitDestructors(std::vector<NodeTree<ASTData>*> identifiers, NodeTree<ASTData>* enclosingObject) {
std::string destructorString = "";
for (auto identifier : identifiers)
destructorString += tabs() + generateMethodIfExists(identifier->getDataRef()->valueType, "destruct", "&" + generate(identifier, enclosingObject).oneString(), std::vector<Type>());
return destructorString;
}
std::string CGenerator::closureStructType(std::set<NodeTree<ASTData>*> closedVariables) {
auto it = closureStructMap.find(closedVariables);
if (it != closureStructMap.end())
return it->second;
std::string typedefString = "typedef struct { ";
// note the increased indirection b/c we're using references to what we closed over
for (auto var : closedVariables) {
// unfortunatly we can't just do it with increased indirection b/c closing over function values
// will actually change the underlying function's type. We cheat and just add a *
//auto tmp = var->getDataRef()->valueType->withIncreasedIndirection();
std::string varName = var->getDataRef()->symbol.getName();
varName = (varName == "this") ? varName : scopePrefix(var) + varName;
typedefString += ValueTypeToCType(var->getDataRef()->valueType, "*"+varName) + ";";
}
std::string structName = "closureStructType" + getID();
typedefString += " } " + structName + ";\n";
functionTypedefString += typedefString;
closureStructMap[closedVariables] = structName;
return structName;
}
std::string CGenerator::ValueTypeToCType(Type *type, std::string declaration, ClosureTypeSpecialType closureSpecial) { return ValueTypeToCTypeThingHelper(type, " " + declaration, closureSpecial); }
std::string CGenerator::ValueTypeToCTypeDecoration(Type *type, ClosureTypeSpecialType closureSpecial) { return CifyName(ValueTypeToCTypeThingHelper(type, "", closureSpecial)); }
std::string CGenerator::ValueTypeToCTypeThingHelper(Type *type, std::string declaration, ClosureTypeSpecialType closureSpecial) {
std::string return_type;
bool do_ending = true;
switch (type->baseType) {
case none:
if (type->typeDefinition)
return_type = scopePrefix(type->typeDefinition) + CifyName(type->typeDefinition->getDataRef()->symbol.getName());
else
return_type = "none";
break;
case function_type:
{
std::string indr_str;
for (int i = 0; i < type->getIndirection(); i++)
indr_str += "*";
auto it = functionTypedefMap.find(*type);
if (it != functionTypedefMap.end()) {
if (closureSpecial == ClosureFunctionPointerTypeWithClosedParam)
return_type = it->second.second + declaration;
else if (closureSpecial == ClosureFunctionPointerTypeWithoutClosedParam)
return_type = it->second.third + declaration;
else
return_type = it->second.first + declaration;
} else {
std::string typedefWithoutVoidStr = "typedef ";
std::string typedefWithVoidStr = "typedef ";
std::string typedefWithoutVoidID = "ID_novoid_" + CifyName(type->toString(false));
std::string typedefWithVoidID = "ID_withvoid_" + CifyName(type->toString(false));
std::string typedefStructID = "ID_struct_" + CifyName(type->toString(false));
// How I wish the world were this kind. Because of C name resolution not looking ahead, this definition needs to be BEFORE
// the object definitions. So to prevent circular dependencies, I'm making this take in a void pointer and we'll simply
// cast in both cases, whether or not there's a data pointer. Sigh.
//std::string typedefStructStr = "typedef struct {" + typedefWithoutVoidID + " func; void* val; } " + typedefStructID + ";\n";
std::string typedefStructStr = "typedef struct { void* func; void* data; } " + typedefStructID + ";\n";
typedefWithoutVoidStr += ValueTypeToCTypeThingHelper(type->returnType, "", closureSpecial);
typedefWithVoidStr += ValueTypeToCTypeThingHelper(type->returnType, "", closureSpecial);
typedefWithoutVoidStr += " (*" + typedefWithoutVoidID + ")(";
typedefWithVoidStr += " (*" + typedefWithVoidID + ")(";
typedefWithVoidStr += "void*";
if (type->parameterTypes.size() == 0)
typedefWithoutVoidStr += "void";
else
for (int i = 0; i < type->parameterTypes.size(); i++) {
typedefWithoutVoidStr += (i != 0 ? ", " : "") + ValueTypeToCTypeThingHelper(type->parameterTypes[i], "", closureSpecial);
typedefWithVoidStr += ", " + ValueTypeToCTypeThingHelper(type->parameterTypes[i], "", closureSpecial);
}
typedefWithoutVoidStr += ");\n";
typedefWithVoidStr += ");\n";
// again, sigh
functionTypedefString += typedefWithoutVoidStr;
functionTypedefString += typedefWithVoidStr;
functionTypedefStringPre += typedefStructStr;
//functionTypedefString += typedefStructStr;
if (closureSpecial == ClosureFunctionPointerTypeWithClosedParam)
return_type = typedefWithVoidID + indr_str + declaration;
else
return_type = typedefStructID + indr_str + declaration;
functionTypedefMap[*type] = make_triple(typedefStructID, typedefWithVoidID, typedefWithoutVoidID);
}
do_ending = false;
}
break;
case void_type:
return_type = "void";
break;
case boolean:
return_type = "bool";
break;
case integer:
return_type = "int";
break;
case floating:
return_type = "float";
break;
case double_percision:
return_type = "double";
break;
case character:
return_type = "char";
break;
default:
return_type = "unknown_ValueType";
break;
}
if (!do_ending)
return return_type;
for (int i = 0; i < type->getIndirection(); i++)
return_type += "*";
return return_type + declaration;
}
std::string CGenerator::CifyName(std::string name) {
std::string operatorsToReplace[] = { "+", "plus",
"-", "minus",
"*", "star",
"/", "div",
"%", "mod",
"^", "carat",
"&", "amprsd",
"|", "pipe",
"~", "tilde",
"!", "exlmtnpt",
",", "comma",
"=", "eq",
"++", "dbplus",
"--", "dbminus",
"<<", "dbleft",
">>", "dbright",
"::", "scopeop",
":", "colon",
"==", "dbq",
"!=", "notequals",
"&&", "doubleamprsnd",
"||", "doublepipe",
"+=", "plusequals",
"-=", "minusequals",
"/=", "divequals",
"%=", "modequals",
"^=", "caratequals",
"&=", "amprsdequals",
"|=", "pipeequals",
"*=", "starequals",
"<<=", "doublerightequals",
"<", "lt",
">", "gt",
">>=", "doubleleftequals",
"(", "openparen",
")", "closeparen",
"[", "obk",
"]", "cbk",
" ", "space",
".", "dot",
"->", "arrow" };
int length = sizeof(operatorsToReplace)/sizeof(std::string);
//std::cout << "Length is " << length << std::endl;
for (int i = 0; i < length; i+= 2) {
size_t foundPos = name.find(operatorsToReplace[i]);
while(foundPos != std::string::npos) {
name = strSlice(name, 0, foundPos) + "_" + operatorsToReplace[i+1] + "_" + strSlice(name, foundPos+operatorsToReplace[i].length(), -1);
foundPos = name.find(operatorsToReplace[i]);
}
}
return name;
}
// Generate the scope prefix, that is "file_class_" for a method, etc
// What do we still need to handle? Packages! But we don't have thoes yet....
std::string CGenerator::scopePrefix(NodeTree<ASTData>* from) {
//return "";
std::string suffix = "_scp_";
ASTData data = from->getData();
if (data.type == translation_unit)
return CifyName(data.symbol.getName()) + suffix;
// so we do prefixing for stuff that c doesn't already scope:
// different files. That's it for now. Methods are already lowered correctly with their parent object,
// that parent object will get scoped. When we add a package system, we'll have to then add their scoping here
return scopePrefix(from->getDataRef()->scope["~enclosing_scope"][0]);
}