1786 lines
111 KiB
C++
1786 lines
111 KiB
C++
#include "ASTTransformation.h"
|
|
|
|
ASTTransformation::ASTTransformation(Importer *importerIn) {
|
|
importer = importerIn;
|
|
topScope = NULL;
|
|
|
|
builtin_trans_unit = new NodeTree<ASTData>("translation_unit", ASTData(translation_unit, Symbol("builtin", false)));
|
|
|
|
//Set up language level reserved identifier scope (only this, right now)
|
|
languageLevelReservedWords["this"].push_back(new NodeTree<ASTData>("identifier", ASTData(identifier, Symbol("this", true), NULL)));
|
|
|
|
//Set up language level special scope. (the final scope checked)
|
|
//Note the NULL type
|
|
languageLevelOperators["+"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("+", true), NULL))));
|
|
languageLevelOperators["-"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("-", true), NULL))));
|
|
languageLevelOperators["*"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("*", true), NULL))));
|
|
languageLevelOperators["/"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("/", true), NULL))));
|
|
languageLevelOperators["%"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("%", true), NULL))));
|
|
languageLevelOperators["&"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("&", true), NULL))));
|
|
languageLevelOperators["--"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("--", true), NULL))));
|
|
languageLevelOperators["++"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("++", true), NULL))));
|
|
languageLevelOperators["=="].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("==", true), new Type(std::vector<Type*>(), new Type(boolean))))));
|
|
languageLevelOperators["!="].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("!=", true), new Type(std::vector<Type*>(), new Type(boolean))))));
|
|
languageLevelOperators["<="].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("<=", true), new Type(std::vector<Type*>(), new Type(boolean))))));
|
|
languageLevelOperators[">="].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol(">=", true), new Type(std::vector<Type*>(), new Type(boolean))))));
|
|
languageLevelOperators["<"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("<", true), new Type(std::vector<Type*>(), new Type(boolean))))));
|
|
languageLevelOperators[">"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol(">", true), new Type(std::vector<Type*>(), new Type(boolean))))));
|
|
languageLevelOperators["&&"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("&&", true), new Type(std::vector<Type*>(), new Type(boolean))))));
|
|
languageLevelOperators["||"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("||", true), new Type(std::vector<Type*>(), new Type(boolean))))));
|
|
languageLevelOperators["!"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("!", true), new Type(std::vector<Type*>(), new Type(boolean))))));
|
|
languageLevelOperators["*="].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("*=", true), NULL))));
|
|
languageLevelOperators["="].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("=", true), NULL))));
|
|
languageLevelOperators["+="].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("+=", true), NULL))));
|
|
languageLevelOperators["-="].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("-=", true), NULL))));
|
|
languageLevelOperators["."].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol(".", true), NULL))));
|
|
languageLevelOperators["->"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("->", true), NULL))));
|
|
languageLevelOperators["[]"].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("[]", true), NULL))));
|
|
languageLevelOperators["[]="].push_back(addToScope("~enclosing_scope", builtin_trans_unit, new NodeTree<ASTData>("function", ASTData(function, Symbol("[]=", true), NULL))));
|
|
}
|
|
|
|
ASTTransformation::~ASTTransformation() {
|
|
}
|
|
|
|
NodeTree<Symbol>* ASTTransformation::getNode(std::string lookup, NodeTree<Symbol>* parent) {
|
|
auto results = getNodes(lookup, parent);
|
|
if (results.size() > 1)
|
|
throw "too many results";
|
|
if (results.size())
|
|
return results[0];
|
|
return nullptr;
|
|
}
|
|
NodeTree<Symbol>* ASTTransformation::getNode(std::string lookup, std::vector<NodeTree<Symbol>*> nodes) {
|
|
auto results = getNodes(lookup, nodes);
|
|
if (results.size() > 1)
|
|
throw "too many results";
|
|
if (results.size())
|
|
return results[0];
|
|
return nullptr;
|
|
}
|
|
std::vector<NodeTree<Symbol>*> ASTTransformation::getNodes(std::string lookup, NodeTree<Symbol>* parent) {
|
|
return getNodes(lookup, parent->getChildren());
|
|
}
|
|
std::vector<NodeTree<Symbol>*> ASTTransformation::getNodes(std::string lookup, std::vector<NodeTree<Symbol>*> nodes) {
|
|
std::vector<NodeTree<Symbol>*> results;
|
|
for (auto i : nodes)
|
|
if (i->getDataRef()->getName() == lookup)
|
|
results.push_back(i);
|
|
return results;
|
|
}
|
|
|
|
//First pass defines all type_defs (objects and ailises), and if_comp/simple_passthrough
|
|
NodeTree<ASTData>* ASTTransformation::firstPass(std::string fileName, NodeTree<Symbol>* parseTree) {
|
|
NodeTree<ASTData>* translationUnit = new NodeTree<ASTData>("translation_unit", ASTData(translation_unit, Symbol(fileName, false)));
|
|
std::vector<NodeTree<Symbol>*> children = parseTree->getChildren();
|
|
importer->registerAST(fileName, translationUnit, parseTree); //Register ourselves with the importer.
|
|
//This puts us in the scope and the list of ASTs that go through all the passes
|
|
|
|
//Go through and define all types (type_defs whether they are classes or ailises, as well as including non-instantiated templates)
|
|
for (NodeTree<Symbol>* i : children) {
|
|
if (i->getDataRef()->getName() == "type_def") {
|
|
std::string name = concatSymbolTree(i->getChildren()[0]);
|
|
NodeTree<ASTData>* firstDec = addToScope("~enclosing_scope", translationUnit, new NodeTree<ASTData>("type_def", ASTData(type_def, Symbol(name, true, name))));
|
|
addToScope(name, firstDec, translationUnit);
|
|
translationUnit->addChild(firstDec);
|
|
//If this is a template, go ahead and set it up. Pass 2 needs templates set up so it can (partially) instantiate them.
|
|
//So we give this typedef its name without any template types and make its type template_type, and point to this from node.
|
|
//Then, when this template is instantiated, it will run transform on from with the types filled in.
|
|
auto typedefChildren = i->getChildren();
|
|
if (typedefChildren.size()>1 && typedefChildren[1]->getData().getName() == "template_dec") {
|
|
if (typedefChildren.size() > 2 && typedefChildren[2]->getData().getName() == "traits")
|
|
firstDec->getDataRef()->valueType = new Type(template_type, i, parseTraits(i->getChildren()[2]));
|
|
else
|
|
firstDec->getDataRef()->valueType = new Type(template_type, i);
|
|
} else if (typedefChildren.size() > 1 && typedefChildren[1]->getData().getName() == "traits") {
|
|
firstDec->getDataRef()->valueType = new Type(firstDec, parseTraits(i->getChildren()[1]));
|
|
} else if (typedefChildren.size() == 1 || typedefChildren[1]->getData().getName() != "type") { //We don't make the type for alises, because the second pass will assign it the type it points to
|
|
firstDec->getDataRef()->valueType = new Type(firstDec);
|
|
}
|
|
|
|
} else if (i->getDataRef()->getName() == "if_comp") {
|
|
std::cout << "IF COMP" << std::endl;
|
|
NodeTree<ASTData>* newNode = addToScope("~enclosing_scope", translationUnit, new NodeTree<ASTData>(i->getDataRef()->getName(), ASTData(if_comp)));
|
|
newNode->addChild(addToScope("~enclosing_scope", newNode, new NodeTree<ASTData>("identifier", ASTData(identifier, Symbol(concatSymbolTree(i->getChildren()[0]),true)))));
|
|
std::set<int> skipChildren;
|
|
skipChildren.insert(0); //Don't do the identifier. The identifier lookup will fail. That's why we do it here.
|
|
newNode->addChildren(transformChildren(i->getChildren(), skipChildren, translationUnit, std::vector<Type>(), false, std::map<std::string, Type*>()));
|
|
translationUnit->addChild(newNode);
|
|
}
|
|
}
|
|
|
|
//Now go through and do all imports
|
|
//We do this second so that if an import also imports us, all of our stuff has already been defined
|
|
for (NodeTree<Symbol>* i : children) {
|
|
if (i->getDataRef()->getName() == "import") {
|
|
auto importChildren = i->getChildren();
|
|
std::string toImport = concatSymbolTree(importChildren[0]);
|
|
auto importNode = addToScope("~enclosing_scope", translationUnit, new NodeTree<ASTData>("import", ASTData(import, Symbol(toImport, true))));
|
|
translationUnit->addChild(importNode);
|
|
//Do the imported file too
|
|
NodeTree<ASTData>* outsideTranslationUnit = importer->importFirstPass(toImport + ".krak");
|
|
translationUnit->getDataRef()->scope[toImport].push_back(outsideTranslationUnit); //Put this transation_unit in the scope as it's files name
|
|
// Now go through and handle anything like import asdf: a; or import asdf: a,b; or import asdf: *;
|
|
// We do this by looping through the children and adding links to them as the scope in the import node. If it's *, we add the entire translationUnit link.
|
|
// Note that import affects scope in two ways:
|
|
// (1) The other file's translationUnit is added to our translationUnit's scope under it's name
|
|
// (2) The import node's scope contains the nodes indicated by the qualifiers after the import (i.e. the import a:b; or import a:*;)
|
|
for (auto importQualifer : slice(importChildren, 1, -1)) { // Not the first child, that's the name of the file
|
|
auto name = concatSymbolTree(importQualifer);
|
|
if (name == "*") {
|
|
std::vector<NodeTree<ASTData>*> tmp;
|
|
tmp.push_back(outsideTranslationUnit);
|
|
importNode->getDataRef()->scope["*"] = tmp;
|
|
} else {
|
|
bool found = false;
|
|
for (auto outsideScopeEntry : outsideTranslationUnit->getDataRef()->scope) {
|
|
if (name == outsideScopeEntry.first) {
|
|
importNode->getDataRef()->scope[outsideScopeEntry.first] = outsideScopeEntry.second;
|
|
found = true;
|
|
}
|
|
}
|
|
// If it's not found yet, put it in as a empty vector for pass 3.
|
|
// This makes sure that it does appear in the scope map, which is what we iterate through later.
|
|
if (!found)
|
|
importNode->getDataRef()->scope[name] = std::vector<NodeTree<ASTData>*>();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return translationUnit;
|
|
}
|
|
|
|
std::set<std::string> ASTTransformation::parseTraits(NodeTree<Symbol>* traitsNode) {
|
|
std::set<std::string> traits;
|
|
//Every other one b/c comma separated
|
|
for (auto i : slice(traitsNode->getChildren(), 0, -1, 2))
|
|
traits.insert(concatSymbolTree(i));
|
|
return traits;
|
|
}
|
|
|
|
//Second pass defines data inside objects, outside declaration statements, and function prototypes (since we have type_defs now)
|
|
void ASTTransformation::secondPass(NodeTree<ASTData>* ast, NodeTree<Symbol>* parseTree) {
|
|
topScope = ast; //Top scope is maintained for templates, which need to add themselves to the top scope from where ever they are instantiated
|
|
std::vector<NodeTree<Symbol>*> children = parseTree->getChildren();
|
|
|
|
//Go through and declare data internal to objects as well as all function prototypes (methods and otherwise)
|
|
//Note that this pass can instantiate class templates
|
|
for (NodeTree<Symbol>* i : children) {
|
|
if (i->getDataRef()->getName() == "type_def") {
|
|
if (i->getChildren().size()>1 && i->getChildren()[1]->getData().getName() == "template_dec") // It's a template
|
|
continue; //We've already set upt the class templates
|
|
std::vector<NodeTree<Symbol>*> typedefChildren = i->getChildren();
|
|
std::string name = concatSymbolTree(typedefChildren[0]);
|
|
NodeTree<ASTData>* typeDef = ast->getDataRef()->scope[name][0]; //No overloaded types (besides uninstantiated templates, which can have multiple versions based on types or specilizations)
|
|
|
|
//It's an alias. Note that if typedefChildren.size() == 1 it's because its a regular class with no body, i.e. {}
|
|
if (typedefChildren.size() > 1 && typedefChildren[1]->getData().getName() == "type") {
|
|
Type* aliasedType = typeFromTypeNode(typedefChildren[1], ast, std::map<std::string, Type*>());
|
|
typeDef->getDataRef()->valueType = aliasedType;
|
|
// only put in scope if it has a definition, that is it is not an aliased primitive
|
|
if (aliasedType->typeDefinition)
|
|
typeDef->getDataRef()->scope["~enclosing_scope"][0] = aliasedType->typeDefinition; //So that object lookups find the right member. Note that this overrides translation_unit as a parent scope
|
|
// std::cout << name << " alias's to " << aliasedType->typeDefinition << std::endl;
|
|
// std::cout << "that is " << aliasedType->typeDefinition->getDataRef()->toString() << std::endl;
|
|
continue;
|
|
}
|
|
//Do the inside of classes here
|
|
secondPassDoClassInsides(typeDef, typedefChildren, std::map<std::string, Type*>());
|
|
} else if (i->getDataRef()->getName() == "function") {
|
|
//Do prototypes of functions
|
|
ast->addChild(secondPassFunction(i, ast, std::map<std::string, Type*>()));
|
|
} else if (i->getDataRef()->getName() == "declaration_statement") {
|
|
//Do declaration statements
|
|
ast->addChild(secondPassDeclaration(i, ast, std::map<std::string, Type*>()));
|
|
}
|
|
}
|
|
}
|
|
|
|
void ASTTransformation::secondPassDoClassInsides(NodeTree<ASTData>* typeDef, std::vector<NodeTree<Symbol>*> typedefChildren, std::map<std::string, Type*> templateTypeReplacements) {
|
|
//We pull out this functionality into a new function because this is used in typeFromTypeNode to partially instantiate templates
|
|
for (NodeTree<Symbol>* j : typedefChildren) {
|
|
if (j->getDataRef()->getName() == "declaration_statement") {
|
|
//do declaration
|
|
typeDef->addChild(secondPassDeclaration(j, typeDef, templateTypeReplacements));
|
|
} else if (j->getDataRef()->getName() == "function") {
|
|
//do member method
|
|
typeDef->addChild(secondPassFunction(j, typeDef, templateTypeReplacements));
|
|
}
|
|
}
|
|
}
|
|
|
|
//This function may need to partially instantiate a class template
|
|
NodeTree<ASTData>* ASTTransformation::secondPassDeclaration(NodeTree<Symbol>* from, NodeTree<ASTData>* scope, std::map<std::string, Type*> templateTypeReplacements) {
|
|
return transform(from, scope, std::vector<Type>(), false, templateTypeReplacements);
|
|
}
|
|
|
|
//This function may need to partially instantiate a class template
|
|
NodeTree<ASTData>* ASTTransformation::secondPassFunction(NodeTree<Symbol>* from, NodeTree<ASTData>* scope, std::map<std::string, Type*> templateTypeReplacements) {
|
|
//If this is a function template
|
|
std::vector<NodeTree<Symbol>*> children = from->getChildren();
|
|
NodeTree<ASTData>* functionDef = NULL;
|
|
std::string functionName;
|
|
if (children[1]->getData().getName() == "template_dec") {
|
|
functionName = concatSymbolTree(children[0]);
|
|
functionDef = new NodeTree<ASTData>("function", ASTData(function, Symbol(functionName, true), new Type(template_type, from)));
|
|
addToScope("~enclosing_scope", scope, functionDef);
|
|
addToScope(functionName, functionDef, scope);
|
|
std::map<std::string, Type*> yetToBeInstantiatedTemplateTypes; //So that template types (like T) that have not been placed yet are found and given
|
|
//a special Type() - baseType = template_type_type
|
|
for (auto i : slice(children[1]->getChildren(), 1, -1, 2)) {//skip commas
|
|
if (i->getChildren().size() == 1)
|
|
yetToBeInstantiatedTemplateTypes[concatSymbolTree(i)] = new Type(template_type_type); //This may have to be combined with templateTypeReplacements if we do templated member functions inside of templated classes
|
|
else //has traits
|
|
yetToBeInstantiatedTemplateTypes[concatSymbolTree(i->getChildren()[0])] = new Type(template_type_type, parseTraits(i->getChildren()[1])); //This may have to be combined with templateTypeReplacements if we do templated member functions inside of templated classes
|
|
}
|
|
std::cout << "Finished Non-Instantiated Template function " << functionName << std::endl;
|
|
return functionDef;
|
|
}
|
|
functionName = concatSymbolTree(children[0]);
|
|
auto returnTypeNode = getNode("type", getNode("typed_return", children)); // if null, the typed_return had no children and we're supposed to automatically do a void type
|
|
auto returnType = returnTypeNode ? typeFromTypeNode(returnTypeNode, scope, templateTypeReplacements): new Type(void_type);
|
|
if (!returnType)
|
|
throw "freakout";
|
|
functionDef = new NodeTree<ASTData>("function", ASTData(function, Symbol(functionName, true), returnType));
|
|
addToScope("~enclosing_scope", scope, functionDef);
|
|
addToScope(functionName, functionDef, scope);
|
|
//We only do the parameter nodes. We don't do the body yet, as this is the secondPass
|
|
//auto transChildren = transformChildren(slice(children,1,-3, 2), std::set<int>(), functionDef, std::vector<Type>(), false, templateTypeReplacements);
|
|
auto transChildren = transformChildren(getNodes("typed_parameter", children), std::set<int>(), functionDef, std::vector<Type>(), false, templateTypeReplacements);
|
|
|
|
functionDef->addChildren(transChildren);
|
|
// Swap the function type over to be the correct type (a function with parameter and return types, etc)
|
|
functionDef->getDataRef()->valueType = new Type(mapNodesToTypePointers(transChildren), functionDef->getDataRef()->valueType);
|
|
return functionDef;
|
|
}
|
|
|
|
//The third pass finishes up by doing all function bodies
|
|
void ASTTransformation::thirdPass(NodeTree<ASTData>* ast, NodeTree<Symbol>* parseTree) {
|
|
topScope = ast; //Top scope is maintained for templates, which need to add themselves to the top scope from where ever they are instantiated
|
|
std::vector<NodeTree<Symbol>*> children = parseTree->getChildren();
|
|
|
|
//Go through and finish both regular functions and class methods
|
|
//Note that this pass can instantiate class AND function templates
|
|
for (NodeTree<Symbol>* i : children) {
|
|
if (i->getDataRef()->getName() == "type_def") {
|
|
if (i->getChildren().size() > 1 && i->getChildren()[1]->getData().getName() == "template_dec") // It's a template
|
|
continue; //We've already set up the class templates
|
|
std::vector<NodeTree<Symbol>*> typedefChildren = i->getChildren();
|
|
std::string name = concatSymbolTree(typedefChildren[0]);
|
|
NodeTree<ASTData>* typeDef = ast->getDataRef()->scope[name][0]; //No overloaded types
|
|
|
|
//It's an alias. Note that typedefChildren.size() can equal one when it's a regular class with an empty body, i.e. {}
|
|
if (typedefChildren.size() > 1 && typedefChildren[1]->getData().getName() == "type")
|
|
continue; //We're done with aliases too
|
|
|
|
//Do the inside of classes here
|
|
for (NodeTree<Symbol>* j : typedefChildren) {
|
|
// skip templated member functions
|
|
if (j->getDataRef()->getName() == "function" && j->getChildren()[1]->getDataRef()->getName() != "template_dec") {
|
|
thirdPassFunction(j, searchScopeForFunctionDef(typeDef, j, std::map<std::string, Type*>()), std::map<std::string, Type*>()); //do member method
|
|
}
|
|
}
|
|
} else if (i->getDataRef()->getName() == "function") {
|
|
//Do prototypes of functions
|
|
if (i->getChildren()[1]->getData().getName() == "template_dec")
|
|
continue; //We've already set up function templates
|
|
thirdPassFunction(i, searchScopeForFunctionDef(ast, i, std::map<std::string, Type*>()), std::map<std::string, Type*>());
|
|
}
|
|
}
|
|
}
|
|
bool ASTTransformation::fourthPass(NodeTree<ASTData>* ast, NodeTree<Symbol>* parseTree) {
|
|
topScope = ast; //Top scope is maintained for templates, which need to add themselves to the top scope from where ever they are instantiated
|
|
|
|
bool changed = false;
|
|
// We do these here, in a loop, so that we can do mututally recursive definitions
|
|
// even inside of class templates. As its methods may cause partial instantiation of
|
|
// other class templates, we need to do this until the size no longer changes.
|
|
std::vector<NodeTree<ASTData>*> classTemplates;
|
|
int lastSize = 0;
|
|
while (lastSize != ast->getDataRef()->scope.size()) {
|
|
lastSize = ast->getDataRef()->scope.size();
|
|
classTemplates.clear();
|
|
for (auto i : ast->getDataRef()->scope) {
|
|
// we actually keep track of the template type replacements now, and need them after they're instantiated, so we use a set to check if we've done it now
|
|
if (i.second[0]->getDataRef()->type == type_def && i.second[0]->getDataRef()->valueType->templateTypeReplacement.size()
|
|
&& !i.second[0]->getDataRef()->valueType->templateInstantiated) {
|
|
classTemplates.push_back(i.second[0]);
|
|
std::cout << "Saving " << i.second[0]->getDataRef()->toString() << " to instantiate." << std::endl;
|
|
changed = true;
|
|
}
|
|
}
|
|
for (auto i : classTemplates) {
|
|
Type* classTemplateType = i->getDataRef()->valueType;
|
|
std::cout << "Instantiating template " << i->getDataRef()->toString() << std::endl;
|
|
for (NodeTree<Symbol>* j : classTemplateType->templateDefinition->getChildren())
|
|
if (j->getDataRef()->getName() == "function" && j->getChildren()[1]->getDataRef()->getName() != "template_dec")
|
|
thirdPassFunction(j, searchScopeForFunctionDef(i, j, classTemplateType->templateTypeReplacement), classTemplateType->templateTypeReplacement); //do member method
|
|
classTemplateType->templateInstantiated = true;
|
|
}
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
//This function finds the right AST definition in a scope given its parseTree
|
|
NodeTree<ASTData>* ASTTransformation::searchScopeForFunctionDef(NodeTree<ASTData>* scope, NodeTree<Symbol>* parseTree, std::map<std::string, Type*> templateTypeReplacements) {
|
|
std::string functionName = concatSymbolTree(parseTree->getChildren()[0]);
|
|
std::vector<Type> types;
|
|
std::vector<NodeTree<Symbol>*> children = parseTree->getChildren();
|
|
//Skipping the initial return type and identifier as well as the final code block
|
|
std::cout << "\n Searching scope for function def, function is: " << concatSymbolTree(children[0]) << ", children size is " << children.size() << std::endl;
|
|
for (auto param: getNodes("typed_parameter", children)) { //Skip over commas
|
|
std::cout << "Making type for lookup ||" << concatSymbolTree(param) << "||" << std::endl;
|
|
Type type = *typeFromTypeNode(param->getChildren().back(), scope, templateTypeReplacements);
|
|
std::cout << "Type made: " << type.toString() << std::endl;
|
|
types.push_back(type);
|
|
}
|
|
std::cout << "About to search scope about " << concatSymbolTree(children[0]) << std::endl;
|
|
NodeTree<ASTData>* result = functionLookup(scope, functionName, types);
|
|
std::cout << "Done searching scope about " << concatSymbolTree(children[0]) << std::endl;
|
|
return result;
|
|
}
|
|
|
|
//This function does the function bodies given its start (the prototype)
|
|
//It is used in the third pass to finish things up
|
|
//Note that it may instantiate class OR function templates, which need to be fully instantiated
|
|
void ASTTransformation::thirdPassFunction(NodeTree<Symbol>* from, NodeTree<ASTData>* functionDef, std::map<std::string, Type*> templateTypeReplacements) {
|
|
NodeTree<Symbol>* codeBlock = from->getChildren().back();
|
|
functionDef->addChild(transform(codeBlock, functionDef, std::vector<Type>(), false, templateTypeReplacements));
|
|
}
|
|
|
|
NodeTree<ASTData>* ASTTransformation::transform(NodeTree<Symbol>* from) {
|
|
//Set up top scope
|
|
return transform(from, NULL, std::vector<Type>(), false, std::map<std::string, Type*>());
|
|
}
|
|
|
|
NodeTree<ASTData>* ASTTransformation::transform(NodeTree<Symbol>* from, NodeTree<ASTData>* scope, std::vector<Type> types, bool limitToFunction, std::map<std::string, Type*> templateTypeReplacements) {
|
|
Symbol current = from->getData();
|
|
std::string name = current.getName();
|
|
NodeTree<ASTData>* newNode = NULL;
|
|
std::vector<NodeTree<Symbol>*> children = from->getChildren();
|
|
std::set<int> skipChildren;
|
|
|
|
if (name == "identifier" || name == "scoped_identifier") {
|
|
//Make sure we get the entire name
|
|
std::string lookupName = concatSymbolTree(from);
|
|
std::cout << "Looking up: " << lookupName << std::endl;
|
|
if (limitToFunction) {
|
|
newNode = functionLookup(scope, lookupName, types);
|
|
if (newNode == NULL) {
|
|
std::cout << "scope lookup failed! Could not find " << lookupName << " in identifier (functionLookup)" << std::endl;
|
|
std::cout << "(maybe this is supposted to happen because the function is a template and we're infrencing), or this is a operator() call" << std::endl;
|
|
// Ok, now we try the case where the lookupName is an object, and we'll try to look for operator()
|
|
// in its scope
|
|
for (auto possibleObj : scopeLookup(scope, lookupName)) {
|
|
NodeTree<ASTData> *typeDefinition = possibleObj->getDataRef()->valueType->typeDefinition;
|
|
if (typeDefinition) {
|
|
// ugly for now, it's just operator because the ( and ) have been removed by a removal
|
|
// pass
|
|
NodeTree<ASTData>* perenOp = functionLookup(typeDefinition, "operator", types);
|
|
if (perenOp) {
|
|
NodeTree<ASTData>* dotFunctionCall = new NodeTree<ASTData>(".", ASTData(function_call, Symbol(".", true), perenOp->getDataRef()->valueType));
|
|
dotFunctionCall->addChild(languageLevelOperators["."][0]); //function definition
|
|
dotFunctionCall->addChild(possibleObj); // The object whose method we're calling
|
|
dotFunctionCall->addChild(perenOp); //The method we're calling
|
|
return dotFunctionCall;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
auto possibleMatches = scopeLookup(scope, lookupName);
|
|
if (!possibleMatches.size()) {
|
|
std::cerr << std::endl;
|
|
std::cerr << "scope lookup error! Could not find " << lookupName << " in identifier (scopeLookup)" << std::endl;
|
|
std::cerr << "lookup failedin file " << getUpperTranslationUnit(scope)->getDataRef()->symbol.getName() << std::endl;
|
|
std::cerr << "note that this might not be the file where the error is" << std::endl;
|
|
std::cerr << "obj.non_existant_member would fail in the file that defines obj's type, for instance" << std::endl;
|
|
std::cerr << std::endl;
|
|
throw "LOOKUP ERROR: " + lookupName;
|
|
}
|
|
// can't cull out functiokns b/c we might want them as values
|
|
newNode = possibleMatches[0];
|
|
//newNode = nullptr;
|
|
//for (auto i : possibleMatches) {
|
|
//if (i->getDataRef()->valueType->baseType != function_type) {
|
|
//newNode = i;
|
|
//break;
|
|
//}
|
|
//}
|
|
//if (!newNode) {
|
|
//std::cerr << "scope lookup error! only found functions for " << lookupName << " in identifier (scopeLookup)" << std::endl;
|
|
//throw "LOOKUP ERROR: " + lookupName;
|
|
//}
|
|
}
|
|
return newNode;
|
|
} else if (name == "type_def") {
|
|
//If it is an alisis of a type
|
|
std::string typeAlias;
|
|
std::cout << "The scope here at type_def is " << scope->getDataRef()->toString() << std::endl;
|
|
if (children[1]->getData().getName() == "type") {
|
|
typeAlias = concatSymbolTree(children[0]);
|
|
newNode = scope->getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit.
|
|
//This is done so that types that reference each other can be declared in any order
|
|
|
|
newNode->getDataRef()->valueType = typeFromTypeNode(children[1], scope, templateTypeReplacements);
|
|
skipChildren.insert(0); //Don't want any children, it's unnecessary for ailising
|
|
skipChildren.insert(1);
|
|
} else { //Is a struct or class
|
|
Type* objectType = NULL;
|
|
if (children[1]->getData().getName() == "template_dec") {
|
|
typeAlias = concatSymbolTree(children[0]);
|
|
std::cout << "Template Type!"<<std::endl;
|
|
newNode = scope->getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit.
|
|
//This is done so that types that reference each other can be declared in any order
|
|
// std::cout << "typeAlias is " << typeAlias << " and newNode is " << newNode << std::endl;
|
|
|
|
//So we give this typedef its name without any template types and make its type template_type, and point to this from node.
|
|
//Then, when this template is instantiated, it will run transform on from with the types filled in.
|
|
objectType = new Type(template_type, from);
|
|
} else {
|
|
typeAlias = concatSymbolTree(children[0]);
|
|
|
|
newNode = scope->getDataRef()->scope[typeAlias][0]; //The node for this type_def has already been made by translation_unit.
|
|
//This is done so that types that reference each other can be declared in any order
|
|
|
|
objectType = new Type(newNode);
|
|
skipChildren.insert(0); //Identifier lookup will be ourselves, as we just added ourselves to the scope
|
|
}
|
|
newNode->getDataRef()->valueType = objectType; //Type is self-referential since this is the definition
|
|
}
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
|
|
|
|
//Templates are done here. No need to go farther
|
|
if (children[1]->getData().getName() == "template_dec")
|
|
return newNode;
|
|
scope = newNode;
|
|
} else if (name == "function" || name == "lambda") {
|
|
std::string functionName;
|
|
//If this is a function template
|
|
if (children[1]->getData().getName() == "template_dec") {
|
|
functionName = concatSymbolTree(children[0]);
|
|
newNode = new NodeTree<ASTData>(name, ASTData(function, Symbol(functionName, true), new Type(template_type, from)));
|
|
addToScope(functionName, newNode, scope);
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
std::map<std::string, Type*> yetToBeInstantiatedTemplateTypes; //So that template types (like T) that have not been placed yet are found and given
|
|
//a special Type() - baseType = template_type_type
|
|
for (auto i : slice(children[1]->getChildren(), 1, -1, 2)) //skip commas
|
|
yetToBeInstantiatedTemplateTypes[concatSymbolTree(i)] = new Type(template_type_type); //This may have to be combined with templateTypeReplacements if we do templated member functions inside of templated classes
|
|
|
|
auto transChildren = transformChildren(slice(children,3,-2), std::set<int>(), newNode, types, limitToFunction, yetToBeInstantiatedTemplateTypes);
|
|
std::cout << "Template function " << functionName << " has these parameters: ";
|
|
for (auto i : transChildren)
|
|
std::cout << "||" << i->getDataRef()->toString() << "|| ";
|
|
std::cout << "??||" << std::endl;
|
|
newNode->addChildren(transChildren);
|
|
|
|
std::cout << "Finished Non-Instantiated Template function " << functionName << std::endl;
|
|
return newNode;
|
|
}
|
|
if (name == "lambda")
|
|
functionName = "lambda" + intToString(lambdaID++);
|
|
else
|
|
functionName = concatSymbolTree(children[0]);
|
|
auto returnTypeNode = getNode("type", getNode("typed_return", children)); // if null, the typed_return had no children and we're supposed to automatically do a void type
|
|
auto returnType = returnTypeNode ? typeFromTypeNode(returnTypeNode, scope, templateTypeReplacements): new Type(void_type);
|
|
newNode = new NodeTree<ASTData>(name, ASTData(function, Symbol(functionName, true), returnType));
|
|
addToScope(functionName, newNode, scope);
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
scope = newNode;
|
|
// If lambda, add to top scope so it gets emitted
|
|
if (name == "lambda")
|
|
addToScope(functionName, newNode, topScope);
|
|
|
|
auto parameters = transformChildren(getNodes("typed_parameter", children), skipChildren, scope, types, limitToFunction, templateTypeReplacements);
|
|
newNode->addChildren(parameters);
|
|
// update type with actual type
|
|
newNode->getDataRef()->valueType = new Type(mapNodesToTypePointers(parameters), newNode->getDataRef()->valueType);
|
|
auto statement = transform(getNode("statement", children), scope, types, limitToFunction, templateTypeReplacements);
|
|
if (name == "lambda")
|
|
newNode->getDataRef()->closedVariables = findVariablesToClose(newNode, statement, scope);
|
|
for (auto i : newNode->getDataRef()->closedVariables)
|
|
std::cout << "OK, CLOSED: " << i->getDataRef()->toString() << std::endl;
|
|
newNode->addChild(statement);
|
|
std::cout << "finished function" << functionName << std::endl;
|
|
return newNode;
|
|
|
|
} else if (name == "code_block") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(code_block));
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
scope = newNode;
|
|
} else if (name == "typed_parameter") {
|
|
//newNode = transform(children[1]); //Transform to get the identifier
|
|
std::string parameterName = concatSymbolTree(children[0]);
|
|
std::cout << "Doing typed parameter " << parameterName << std::endl;
|
|
//std::string typeString = concatSymbolTree(children[0]);//Get the type (left child) and set our new identifer to be that type
|
|
newNode = new NodeTree<ASTData>("identifier", ASTData(identifier, Symbol(parameterName, true), typeFromTypeNode(children[2], scope, templateTypeReplacements)));
|
|
addToScope(parameterName, newNode, scope);
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
std::cout << "Done doing typed_parameter " << parameterName << std::endl;
|
|
return newNode;
|
|
} else if (name == "boolean_expression" || name == "and_boolean_expression" || name == "bool_exp") {
|
|
//If this is an actual part of an expression, not just a premoted term
|
|
if (children.size() > 1) {
|
|
//We do children first so we can do appropriate scope searching with types (yay operator overloading!)
|
|
skipChildren.insert(1);
|
|
std::vector<NodeTree<ASTData>*> transformedChildren = transformChildren(children, skipChildren, scope, types, limitToFunction, templateTypeReplacements);
|
|
std::string functionCallString = concatSymbolTree(children[1]);
|
|
NodeTree<ASTData>* function = doFunction(scope, functionCallString, transformedChildren, templateTypeReplacements);
|
|
if (function == NULL) {
|
|
std::cerr << "scope lookup error! Could not find " << functionCallString << " in boolean stuff " << std::endl;
|
|
throw "LOOKUP ERROR: " + functionCallString;
|
|
}
|
|
return function;
|
|
} else {
|
|
// XXX What the heck is this
|
|
if (children.size() == 0)
|
|
return new NodeTree<ASTData>();
|
|
return transform(children[0], scope, types, limitToFunction, templateTypeReplacements); //Just a promoted term, so do child
|
|
}
|
|
//Here's the order of ops stuff
|
|
} else if (name == "expression" || name == "shiftand" || name == "term" || name == "unarad" || name == "access_operation") {
|
|
//If this is an actual part of an expression, not just a premoted child
|
|
if (children.size() > 2) {
|
|
NodeTree<ASTData>* lhs = transform(children[0], scope, std::vector<Type>(),limitToFunction, templateTypeReplacements); //LHS does not inherit types
|
|
NodeTree<ASTData>* rhs;
|
|
if (name == "access_operation") {
|
|
std::cout << "lhs is: " << lhs->getDataRef()->toString() << std::endl;
|
|
rhs = transform(children[2], lhs->getDataRef()->valueType->typeDefinition, types, limitToFunction, templateTypeReplacements); //If an access operation, then the right side will be in the lhs's type's scope
|
|
// this might be a template member function, so do like below would do, but make it our rhs
|
|
if (rhs == nullptr)
|
|
rhs = findOrInstantiateFunctionTemplate(slice(children,2,-1), lhs->getDataRef()->valueType->typeDefinition, types, templateTypeReplacements);
|
|
} else
|
|
rhs = transform(children[2], scope, types, limitToFunction, templateTypeReplacements);
|
|
|
|
std::string functionCallName = concatSymbolTree(children[1]);
|
|
if (functionCallName == "[")
|
|
functionCallName = "[]"; //fudge the lookup of brackets because only one is at children[1] (the other is at children[3])
|
|
//std::cout << "scope lookup from expression or similar" << std::endl;
|
|
std::vector<NodeTree<ASTData>*> transformedChildren; transformedChildren.push_back(lhs); transformedChildren.push_back(rhs);
|
|
newNode = doFunction(scope, functionCallName, transformedChildren, templateTypeReplacements);
|
|
if (newNode == NULL) {
|
|
std::cerr << "scope lookup error! Could not find " << functionCallName << " in expression " << std::endl;
|
|
throw "LOOKUP ERROR: " + functionCallName;
|
|
}
|
|
return newNode;
|
|
}
|
|
if (children.size() == 1) {
|
|
newNode = transform(children[0], scope, types, limitToFunction, templateTypeReplacements); //Just a promoted child, so do it instead
|
|
if (newNode)
|
|
return newNode;
|
|
}
|
|
// So if children.size() != 1, or that returned null because the function lookup failed,
|
|
// we try to do a template instatiation. If it had 2 children, it's an instantion, if it has 1
|
|
// maybe it's a template instantiation we're supposed to infer the types for. Either way, we let
|
|
// findorinstantiatefunctiontemplate take care of it.
|
|
return findOrInstantiateFunctionTemplate(children, scope, types, templateTypeReplacements);
|
|
} else if (name == "factor") { //Do factor here, as it has all the weird unary operators
|
|
//If this is an actual part of an expression, not just a premoted child
|
|
//NO SUPPORT FOR CASTING YET
|
|
std::string funcName;
|
|
if (children.size() == 2) {
|
|
funcName = concatSymbolTree(children[0]);
|
|
NodeTree<ASTData>* param;
|
|
// I think this is where we look at pre vs post operators
|
|
if (funcName == "*" || funcName == "&" || funcName == "++" || funcName == "--" || funcName == "+" || funcName == "-" || funcName == "!" || funcName == "~")
|
|
param = transform(children[1], scope, types, limitToFunction, templateTypeReplacements);
|
|
else
|
|
funcName = concatSymbolTree(children[1]), param = transform(children[0], scope, types, limitToFunction, templateTypeReplacements);
|
|
|
|
std::cout << "\t\t\t funcName= " << funcName << " param: " << param->getDataRef()->symbol.getName() << std::endl;
|
|
//std::cout << "scope lookup from factor" << std::endl;
|
|
std::vector<NodeTree<ASTData>*> transformedChildren; transformedChildren.push_back(param);
|
|
NodeTree<ASTData>* function = doFunction(scope, funcName, transformedChildren, templateTypeReplacements);
|
|
std::cout << "\t\t\t AFTER dofunction= " << std::endl;
|
|
if (function == NULL) {
|
|
std::cerr << "scope lookup error! Could not find " << funcName << " in factor " << std::endl;
|
|
throw "LOOKUP ERROR: " + funcName;
|
|
}
|
|
|
|
return function;
|
|
} else {
|
|
return transform(children[0], scope, types, limitToFunction, templateTypeReplacements); //Just a promoted child, so do it instead
|
|
}
|
|
} else if (name == "statement") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(statement));
|
|
} else if (name == "if_statement") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(if_statement));
|
|
} else if (name == "while_loop") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(while_loop));
|
|
} else if (name == "for_loop") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(for_loop));
|
|
} else if (name == "return_statement") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(return_statement));
|
|
} else if (name == "break_statement") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(break_statement));
|
|
} else if (name == "continue_statement") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(continue_statement));
|
|
} else if (name == "defer_statement") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(defer_statement));
|
|
} else if (name == "assignment_statement") {
|
|
std::string assignFuncName = concatSymbolTree(children[1]);
|
|
// but first check to see if the lefthand side is a factor which is a unarad with "[" in order to first check for operator []=?
|
|
// checking for this very specific case
|
|
// ok, assuming the left side is a factor, we grab the unarad
|
|
auto unarad = getNode("unarad", children[0]);
|
|
if (unarad && getNode("[", unarad)) {
|
|
// allrightly, check to see if we have []=
|
|
NodeTree<ASTData>* lhs = transform(getNode("unarad", unarad), scope, types, limitToFunction, templateTypeReplacements);
|
|
NodeTree<ASTData>* indexArg = transform(getNode("expression", unarad), scope, types, limitToFunction, templateTypeReplacements);
|
|
NodeTree<ASTData>* rhs = transform(children[2], scope, types, limitToFunction, templateTypeReplacements);
|
|
std::vector<NodeTree<ASTData>*> transformedChildren; transformedChildren.push_back(lhs); transformedChildren.push_back(indexArg); transformedChildren.push_back(rhs);
|
|
// doFunction special cases []= to return null if it's not found as a method
|
|
NodeTree<ASTData>* function = doFunction(scope, "[]=", transformedChildren, templateTypeReplacements);
|
|
if (function)
|
|
return function;
|
|
// otherwise, screw it and do it regularly
|
|
}
|
|
NodeTree<ASTData>* lhs = transform(children[0], scope, types, limitToFunction, templateTypeReplacements);
|
|
NodeTree<ASTData>* rhs = transform(children[2], scope, types, limitToFunction, templateTypeReplacements);
|
|
std::vector<NodeTree<ASTData>*> transformedChildren; transformedChildren.push_back(lhs); transformedChildren.push_back(rhs);
|
|
|
|
// see if this is an overloaded assignment
|
|
NodeTree<ASTData>* function = doFunction(scope, assignFuncName, transformedChildren, templateTypeReplacements);
|
|
if (function)
|
|
return function;
|
|
|
|
newNode = new NodeTree<ASTData>(name, ASTData(assignment_statement));
|
|
if (assignFuncName == "=") {
|
|
newNode->addChildren(transformedChildren);
|
|
} else {
|
|
//For assignments like += or *=, expand the syntatic sugar.
|
|
std::string functionName = assignFuncName.substr(0,1);
|
|
NodeTree<ASTData>* operatorCall = doFunction(scope, functionName, transformedChildren, templateTypeReplacements);
|
|
if (operatorCall == NULL) {
|
|
std::cerr << "scope lookup error! Could not find " << functionName << " in assignment_statement " << std::endl;
|
|
throw "LOOKUP ERROR: " + functionName;
|
|
}
|
|
newNode->addChild(lhs);
|
|
newNode->addChild(operatorCall);
|
|
}
|
|
return newNode;
|
|
} else if (name == "declaration_statement") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(declaration_statement));
|
|
std::string newIdentifierStr = concatSymbolTree(children[0]);
|
|
NodeTree<Symbol>* typeSyntaxNode = getNode("type", children);
|
|
Type* identifierType = typeSyntaxNode ? typeFromTypeNode(typeSyntaxNode, scope, templateTypeReplacements) : nullptr;
|
|
|
|
if (identifierType)
|
|
std::cout << "Declaring an identifier " << newIdentifierStr << " to be of type " << identifierType->toString() << std::endl;
|
|
else
|
|
std::cout << "Declaring an identifier " << newIdentifierStr << " with type to be type-inferenced " << std::endl;
|
|
|
|
if (children.size() > 1 && concatSymbolTree(children[1]) == ".") {
|
|
NodeTree<ASTData>* newIdentifier = new NodeTree<ASTData>("identifier", ASTData(identifier, Symbol(newIdentifierStr, true), identifierType));
|
|
addToScope(newIdentifierStr, newIdentifier, scope);
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
addToScope("~enclosing_scope", newNode, newIdentifier);
|
|
newNode->addChild(newIdentifier);
|
|
//A bit of a special case for declarations - if there's anything after just the normal 1 node declaration, it's either
|
|
//an expression that is assigned to the declaration (int a = 4;) or a member call (Object a.constructAThing())
|
|
//This code is a simplified version of the code in function_call with respect to access_operation.
|
|
//Note that in this case, what is lhs there is our newIdentifier here (the declaration of the left side of the access operation)
|
|
auto sliced = slice(children, 3, -3);
|
|
std::vector<NodeTree<ASTData>*> initPositionFuncParams = transformChildren(sliced, std::set<int>(), scope, types, limitToFunction, templateTypeReplacements);
|
|
NodeTree<ASTData>* rhs = transform(children[2], identifierType->typeDefinition, mapNodesToTypes(initPositionFuncParams), true, templateTypeReplacements); //If an access operation, then the right side will be in the lhs's type's scope
|
|
std::vector<NodeTree<ASTData>*> transformedChildren; transformedChildren.push_back(newIdentifier); transformedChildren.push_back(rhs);
|
|
NodeTree<ASTData>* accessFuncCall = doFunction(scope, ".", transformedChildren, templateTypeReplacements);
|
|
accessFuncCall->getDataRef()->valueType = rhs->getDataRef()->valueType;
|
|
//Now we borrow a bit of code from function_call below to actually use our new accessFuncCall to setup a "initPosition" function call
|
|
//that will follow the identifier in this declaration node
|
|
std::string initPosFuncName = newIdentifierStr + "." + concatSymbolTree(children[2]);
|
|
NodeTree<ASTData>* initPositionFuncCall = new NodeTree<ASTData>(initPosFuncName, ASTData(function_call, Symbol(initPosFuncName, true)));
|
|
initPositionFuncCall->addChild(accessFuncCall);
|
|
initPositionFuncCall->getDataRef()->valueType = accessFuncCall->getDataRef()->valueType;
|
|
initPositionFuncCall->addChildren(initPositionFuncParams);
|
|
newNode->addChild(initPositionFuncCall);
|
|
return newNode;
|
|
}
|
|
|
|
NodeTree<ASTData>* newIdentifier = new NodeTree<ASTData>("identifier", ASTData(identifier, Symbol(newIdentifierStr, true), identifierType));
|
|
addToScope(newIdentifierStr, newIdentifier, scope);
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
addToScope("~enclosing_scope", newNode, newIdentifier);
|
|
|
|
auto boolExp = getNode("boolean_expression", children);
|
|
NodeTree<ASTData>* toAssign = boolExp ? transform(boolExp, scope, types, limitToFunction, templateTypeReplacements) : nullptr;
|
|
// for type inferencing
|
|
if (!identifierType) {
|
|
if (toAssign) {
|
|
// no reference variables
|
|
identifierType = toAssign->getDataRef()->valueType->withoutReference();
|
|
newIdentifier->getDataRef()->valueType = identifierType;
|
|
} else
|
|
throw "have to inference but no expression";
|
|
}
|
|
|
|
|
|
newNode->addChild(newIdentifier);
|
|
if (toAssign)
|
|
newNode->addChild(toAssign);
|
|
return newNode;
|
|
} else if (name == "if_comp") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(if_comp));
|
|
newNode->addChild(addToScope("~enclosing_scope", scope, new NodeTree<ASTData>("identifier", ASTData(identifier, Symbol(concatSymbolTree(children[0]),true)))));
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
skipChildren.insert(0); //Don't do the identifier. The identifier lookup will fail. That's why we do it here.
|
|
} else if (name == "simple_passthrough") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(simple_passthrough));
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
} else if (name == "passthrough_params") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(passthrough_params));
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
} else if (name == "in_passthrough_params") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(in_passthrough_params));
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
} else if (name == "out_passthrough_params") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(out_passthrough_params));
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
} else if (name == "opt_string") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(opt_string));
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
} else if (name == "param_assign") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(param_assign));
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
} else if (name == "function_call") {
|
|
std::string functionCallName = concatSymbolTree(children[0]);
|
|
newNode = new NodeTree<ASTData>(functionCallName, ASTData(function_call, Symbol(functionCallName, true)));
|
|
|
|
skipChildren.insert(0);
|
|
std::vector<NodeTree<ASTData>*> transformedChildren = transformChildren(children, skipChildren, scope, types, limitToFunction, templateTypeReplacements);
|
|
std::cout << "scope lookup from function_call: " << functionCallName << std::endl;
|
|
for (auto i : children)
|
|
std::cout << i << " : " << i->getName() << " : " << i->getDataRef()->getName() << std::endl;
|
|
|
|
NodeTree<ASTData>* function = transform(children[0], scope, mapNodesToTypes(transformedChildren), true, templateTypeReplacements);
|
|
std::cout << "The thing: " << function << " : " << function->getName() << std::endl;
|
|
for (auto i : function->getChildren())
|
|
std::cout << i->getName() << " ";
|
|
std::cout << std::endl;
|
|
newNode->addChild(function);
|
|
// note that we now get the return type from the function call's type
|
|
newNode->getDataRef()->valueType = function->getDataRef()->valueType->returnType;
|
|
newNode->addChildren(transformedChildren);
|
|
return newNode;
|
|
} else if (name == "parameter") {
|
|
return transform(children[0], scope, types, limitToFunction, templateTypeReplacements); //Don't need a parameter node, just the value
|
|
} else if (name == "type") {
|
|
std::string theConcat = concatSymbolTree(from); //We have no symbol, so this will concat our children
|
|
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(theConcat, true), typeFromTypeNode(from, scope, templateTypeReplacements)));
|
|
addToScope("~enclosing_scope", scope, newNode);
|
|
} else if (name == "number") {
|
|
return transform(children[0], scope, types, limitToFunction, templateTypeReplacements);
|
|
} else if (name == "integer") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(concatSymbolTree(from), true), new Type(integer)));
|
|
} else if (name == "floating_literal") {
|
|
std::string literal = concatSymbolTree(from);
|
|
ValueType type = double_percision;
|
|
if (literal.back() == 'f') {
|
|
literal = literal.substr(0, literal.length()-1);
|
|
type = floating;
|
|
} else if (literal.back() == 'd') {
|
|
literal = literal.substr(0, literal.length()-1);
|
|
type = double_percision;
|
|
}
|
|
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(literal, true), new Type(type)));
|
|
} else if (name == "char") { //Is this correct? This might be a useless old thing
|
|
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 1))); //Indirection of 1 for array
|
|
} else if (name == "string" || name == "triple_quoted_string") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 1))); //Indirection of 1 for array
|
|
} else if (name == "character") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(character, 0))); //Indirection of 0 for character
|
|
} else if (name == "bool") {
|
|
newNode = new NodeTree<ASTData>(name, ASTData(value, Symbol(concatSymbolTree(children[0]), true), new Type(boolean, 0))); //Indirection of 0 for character
|
|
} else if (name == "AmbiguityPackOuter" || name == "AmbiguityPackInner") {
|
|
std::cerr << "///////////////////////////////////////////////////////////////////////////////" << std::endl;
|
|
std::cerr << "Ambigious program when parsed by this grammer! This is a bug, please report it." << std::endl;
|
|
std::cerr << "///////////////////////////////////////////////////////////////////////////////" << std::endl;
|
|
std::cerr << concatSymbolTree(from) << std::endl;
|
|
throw "Ambigious parse!";
|
|
} else {
|
|
// Should get rid of this eventually. Right now it handles cases like sign, alpha, a comma, etc
|
|
//std::cout << "Unhandled syntax node: " << name << std::endl;
|
|
return new NodeTree<ASTData>();
|
|
}
|
|
|
|
//Do all children but the ones we skip
|
|
newNode->addChildren(transformChildren(children, skipChildren, scope, types, limitToFunction, templateTypeReplacements));
|
|
return newNode;
|
|
}
|
|
|
|
//We use this functionality a lot at different places
|
|
std::vector<NodeTree<ASTData>*> ASTTransformation::transformChildren(std::vector<NodeTree<Symbol>*> children, std::set<int> skipChildren, NodeTree<ASTData>* scope, std::vector<Type> types, bool limitToFunction, std::map<std::string, Type*> templateTypeReplacements) {
|
|
std::vector<NodeTree<ASTData>*> transformedChildren;
|
|
// In general, iterate through children and do them. Might not do this for all children.
|
|
for (int i = 0; i < children.size(); i++) {
|
|
if (skipChildren.find(i) == skipChildren.end()) {
|
|
NodeTree<ASTData>* transChild = transform(children[i], scope, types, limitToFunction, templateTypeReplacements);
|
|
if (transChild->getDataRef()->type) //Only add the children that have a real ASTData::ASTType, that is, legit ASTData.
|
|
transformedChildren.push_back(transChild);
|
|
else
|
|
delete transChild;
|
|
}
|
|
}
|
|
return transformedChildren;
|
|
}
|
|
|
|
//Simple way to extract strings from syntax trees. Used often for identifiers, strings, types
|
|
std::string ASTTransformation::concatSymbolTree(NodeTree<Symbol>* root) {
|
|
std::string concatString;
|
|
std::string ourValue = root->getDataRef()->getValue();
|
|
if (ourValue != "NoValue")
|
|
concatString += ourValue;
|
|
std::vector<NodeTree<Symbol>*> children = root->getChildren();
|
|
for (int i = 0; i < children.size(); i++) {
|
|
concatString += concatSymbolTree(children[i]);
|
|
}
|
|
return concatString;
|
|
}
|
|
|
|
//We pass in the actual children (parameters) to allow us to handle overloaded operator methods (where a parameter is actually the scope of the method)
|
|
NodeTree<ASTData>* ASTTransformation::doFunction(NodeTree<ASTData>* scope, std::string lookup, std::vector<NodeTree<ASTData>*> nodes, std::map<std::string, Type*> templateTypeReplacements) {
|
|
auto LLElementIterator = languageLevelOperators.find(lookup);
|
|
NodeTree<ASTData>* newNode;
|
|
if (LLElementIterator != languageLevelOperators.end()) {
|
|
std::cout << "Checking for early method level operator overload" << std::endl;
|
|
std::string lookupOp = "operator" + lookup;
|
|
for (auto i : nodes)
|
|
std::cout << i->getDataRef()->toString() << " ";
|
|
std::cout << std::endl;
|
|
NodeTree<ASTData>* operatorMethod = NULL;
|
|
|
|
// make sure this isn't a pointer, also. Silly vector<string> bug
|
|
if (nodes[0]->getDataRef()->valueType && !nodes[0]->getDataRef()->valueType->getIndirection() && nodes[0]->getDataRef()->valueType->typeDefinition) {
|
|
operatorMethod = functionLookup(nodes[0]->getDataRef()->valueType->typeDefinition, lookupOp, mapNodesToTypes(slice(nodes,1,-1)));
|
|
// we're also gonna check to see if this is an operator template method
|
|
if (!operatorMethod)
|
|
operatorMethod = tryToFindOrInstantiateFunctionTemplate(lookupOp, nodes[0]->getDataRef()->valueType->typeDefinition, mapNodesToTypes(slice(nodes,1,-1)), templateTypeReplacements);
|
|
}
|
|
if (operatorMethod) {
|
|
//Ok, so we construct
|
|
std::cout << "Early method level operator was found" << std::endl;
|
|
//return operatorMethod;
|
|
NodeTree<ASTData>* newNode = new NodeTree<ASTData>(lookupOp, ASTData(function_call, Symbol(lookupOp, true)));
|
|
NodeTree<ASTData>* dotFunctionCall = new NodeTree<ASTData>(".", ASTData(function_call, Symbol(".", true), operatorMethod->getDataRef()->valueType));
|
|
dotFunctionCall->addChild(languageLevelOperators["."][0]); //function definition
|
|
dotFunctionCall->addChild(nodes[0]); // The object whose method we're calling
|
|
dotFunctionCall->addChild(operatorMethod); //The method we're calling
|
|
newNode->addChild(dotFunctionCall); // First child of function call is a link to the function definition
|
|
newNode->addChildren(slice(nodes, 1, -1)); //The rest of the parameters to the operator
|
|
|
|
|
|
//Set the value of this function call
|
|
newNode->getDataRef()->valueType = operatorMethod->getDataRef()->valueType->returnType;
|
|
return newNode;
|
|
}
|
|
std::cout << "Early method level operator was NOT found" << std::endl;
|
|
if (lookup == "[]=") {
|
|
std::cout << "as the operator was []= we're returning nullptr now and gonna let our above handle it as seperate ones" << std::endl;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
newNode = new NodeTree<ASTData>(lookup, ASTData(function_call, Symbol(lookup, true)));
|
|
NodeTree<ASTData>* function = functionLookup(scope, lookup, mapNodesToTypes(nodes));
|
|
std::cout << "Num of newNode children " << newNode->getChildren().size() << std::endl;
|
|
newNode->addChild(function);
|
|
std::cout << "Num of newNode children " << newNode->getChildren().size() << std::endl;
|
|
newNode->addChildren(nodes);
|
|
std::cout << "Num of newNode children " << newNode->getChildren().size() << std::endl;
|
|
std::cout << "nodes " << nodes.size() << std::endl;
|
|
|
|
//Specially handle dereference and address of to assign the correct type
|
|
//We need some significant other type corrections here, maybe to the point of being their own function. (int + float, etc.)
|
|
std::cout << "the passed in nodes" << std::endl;
|
|
for (auto i : nodes)
|
|
std::cout << i->getDataRef()->toString() << " ";
|
|
std::cout<<std::endl;
|
|
|
|
|
|
std::vector<Type> oldTypes = mapNodesToTypes(nodes);
|
|
std::cout << "the oldtypes size" << oldTypes.size() << std::endl;
|
|
if ((nodes.size() != 2 && lookup == "*") || lookup == "&" || lookup == "[]") {
|
|
Type* newType = oldTypes[0].clone();
|
|
if (lookup == "*" || lookup == "[]")
|
|
newType->decreaseIndirection();
|
|
else
|
|
newType->increaseIndirection();
|
|
|
|
newNode->getDataRef()->valueType = newType, std::cout << "Operator " + lookup << " is altering indirection from " << oldTypes[0].toString() << " to " << newType->toString() << std::endl;
|
|
} else {
|
|
std::cout << "Some other ||" << lookup << "||" << std::endl;
|
|
if (function->getDataRef()->valueType)
|
|
newNode->getDataRef()->valueType = function->getDataRef()->valueType->returnType;
|
|
}
|
|
|
|
// Set the value of this function call if it has not already been set
|
|
// It's important that it's the last parameter, the rhs if it has one
|
|
// because of the . operator, etc
|
|
if (newNode->getDataRef()->valueType == NULL) {
|
|
std::cout << "The value type from doFunction was null! (for " << lookup << ")" << std::endl;
|
|
Type* newType = nullptr;
|
|
if (lookup == "->")
|
|
newType = oldTypes.back().clone();
|
|
else if (oldTypes.front().getIndirection())
|
|
newType = oldTypes.front().clone();
|
|
else if (oldTypes.back().getIndirection())
|
|
newType = oldTypes.back().clone();
|
|
else
|
|
newType = (oldTypes.front().baseType > oldTypes.back().baseType) ? oldTypes.front().clone() : oldTypes.back().clone();
|
|
//if (!newType)
|
|
//newType = oldTypes.back().clone();
|
|
|
|
newNode->getDataRef()->valueType = newType;
|
|
std::cout << "function call to " << lookup << " - " << newNode->getName() << " is now " << newNode->getDataRef()->valueType << std::endl;
|
|
}
|
|
return newNode;
|
|
}
|
|
// checks to see if scope is in node's parent scope chain
|
|
bool ASTTransformation::inScopeChain(NodeTree<ASTData>* node, NodeTree<ASTData>* scope) {
|
|
auto nodeScope = node->getDataRef()->scope;
|
|
auto enclosingItr = nodeScope.find("~enclosing_scope");
|
|
if (enclosingItr == nodeScope.end())
|
|
return false;
|
|
if (enclosingItr->second[0] == scope)
|
|
return true;
|
|
return inScopeChain(enclosingItr->second[0], scope);
|
|
}
|
|
// We return a set of all identifers used in the children of stat that are not declared somewhere below stat
|
|
// used to calculate the closedvariables for closures
|
|
std::set<NodeTree<ASTData>*> ASTTransformation::findVariablesToClose(NodeTree<ASTData>* func, NodeTree<ASTData>* stat, NodeTree<ASTData>* scope) {
|
|
std::set<NodeTree<ASTData>*> closed;
|
|
//enum ASTType {undef, translation_unit, interpreter_directive, import, identifier, type_def,
|
|
//function, code_block, typed_parameter, expression, boolean_expression, statement,
|
|
//if_statement, while_loop, for_loop, return_statement, break_statement, continue_statement, defer_statement,
|
|
//assignment_statement, declaration_statement, if_comp, simple_passthrough, passthrough_params,
|
|
//in_passthrough_params, out_passthrough_params, opt_string, param_assign, function_call, value};
|
|
if (stat->getDataRef()->type == function || stat->getDataRef()->type == translation_unit
|
|
|| stat->getDataRef()->type == type_def || stat->getDataRef()->type == value
|
|
) {
|
|
// if this is a method we know that it is a method of our current enclosing object (as we already know that we're not on the right side of . or ->, see below)
|
|
// we should add our enclosing object, this, to our closed over variables
|
|
// also, if this is a lambda, we should close over what it needs to close over too...
|
|
if (stat->getDataRef()->type == function) {
|
|
auto statEnclosingScope = stat->getDataRef()->scope["~enclosing_scope"][0];
|
|
if (statEnclosingScope && statEnclosingScope->getDataRef()->valueType && statEnclosingScope->getDataRef()->valueType->typeDefinition)
|
|
closed.insert(generateThis(scope));
|
|
if (stat->getDataRef()->closedVariables.size()) {
|
|
for (auto item : stat->getDataRef()->closedVariables) {
|
|
auto recClosed = findVariablesToClose(func, item, scope);
|
|
closed.insert(recClosed.begin(), recClosed.end());
|
|
}
|
|
}
|
|
}
|
|
return closed;
|
|
}
|
|
if (stat->getDataRef()->type == function_call && (stat->getDataRef()->symbol.getName() == "." || stat->getDataRef()->symbol.getName() == "->")) {
|
|
// only search on the left side of access operators like . and ->
|
|
auto recClosed = findVariablesToClose(func, stat->getChildren()[1], scope);
|
|
closed.insert(recClosed.begin(), recClosed.end());
|
|
return closed;
|
|
}
|
|
if (stat->getDataRef()->type == identifier && !inScopeChain(stat, func))
|
|
closed.insert(stat);
|
|
for (auto child: stat->getChildren()) {
|
|
auto recClosed = findVariablesToClose(func, child, scope);
|
|
closed.insert(recClosed.begin(), recClosed.end());
|
|
}
|
|
return closed;
|
|
}
|
|
|
|
//Lookup a function that takes in parameters matching the types passed in
|
|
NodeTree<ASTData>* ASTTransformation::functionLookup(NodeTree<ASTData>* scope, std::string lookup, std::vector<Type> types) {
|
|
//We first check to see if it's one of the special reserved identifiers (only this, for now) and return early if it is.
|
|
auto LLElementIterator = languageLevelReservedWords.find(lookup);
|
|
if (LLElementIterator != languageLevelReservedWords.end()) {
|
|
std::cout << "found it at language level as reserved word." << std::endl;
|
|
return LLElementIterator->second[0];
|
|
}
|
|
//We search the languageLevelOperators to see if it's an operator. If so, we modifiy the lookup with a preceding "operator"
|
|
LLElementIterator = languageLevelOperators.find(lookup);
|
|
if (LLElementIterator != languageLevelOperators.end())
|
|
lookup = "operator" + lookup;
|
|
|
|
//Look up the name
|
|
std::vector<NodeTree<ASTData>*> possibleMatches = scopeLookup(scope, lookup);
|
|
std::cout << "Function lookup of " << lookup << " has " << possibleMatches.size() << " possible matches." << std::endl;
|
|
if (possibleMatches.size()) {
|
|
for (auto i : possibleMatches) {
|
|
//We're not looking for types
|
|
if (i->getDataRef()->type == type_def)
|
|
continue;
|
|
Type* functionType = i->getDataRef()->valueType;
|
|
|
|
int numTypes = functionType->parameterTypes.size();
|
|
if (types.size() != numTypes) {
|
|
std::cout << "Type sizes do not match between two " << lookup << "(" << types.size() << "," << numTypes << "), types are: ";
|
|
for (auto j : types)
|
|
std::cout << j.toString() << " ";
|
|
std::cout << std::endl;
|
|
std::cout << "Versus" << std::endl;
|
|
for (int j = 0; j < numTypes; j++)
|
|
std::cout << functionType->parameterTypes[j]->toString() << " ";
|
|
std::cout << std::endl;
|
|
continue;
|
|
}
|
|
bool typesMatch = true;
|
|
for (int j = 0; j < types.size(); j++) {
|
|
Type* tmpType = functionType->parameterTypes[j];
|
|
//Don't worry if types don't match if it's a template type
|
|
//if (types[j] != *tmpType && tmpType->baseType != template_type_type) {
|
|
// WE DO WORRY NOW B/C template type infrence is ugly and we need this to fail
|
|
// for regular function lookups so that we know to retry with a template
|
|
//
|
|
// we use test_equality so that we can pass in a false to not care about references
|
|
if (!types[j].test_equality(*tmpType, false)) {
|
|
typesMatch = false;
|
|
std::cout << "Types do not match between two " << lookup << " " << types[j].toString();
|
|
std::cout << " vs " << tmpType->toString() << std::endl;
|
|
break;
|
|
}
|
|
}
|
|
if (typesMatch)
|
|
return i;
|
|
}
|
|
}
|
|
|
|
std::cout << "could not find " << lookup << " in standard scopes, checking for operator" << std::endl;
|
|
//Note that we don't check for types. At some point we should, as we don't know how to add objects/structs without overloaded operators, etc
|
|
//Also, we've already searched for the element because this is also how we keep track of operator overloading
|
|
if (LLElementIterator != languageLevelOperators.end()) {
|
|
std::cout << "found it at language level as operator." << std::endl;
|
|
return LLElementIterator->second[0];
|
|
}
|
|
std::cout << "Did not find, returning NULL" << std::endl;
|
|
return NULL;
|
|
}
|
|
|
|
//Lookup class templates. It evaluates possible matches on traits
|
|
NodeTree<ASTData>* ASTTransformation::templateClassLookup(NodeTree<ASTData>* scope, std::string lookup, std::vector<Type*> templateInstantiationTypes) {
|
|
std::set<NodeTree<ASTData>*> mostFittingTemplates;
|
|
int bestNumTraitsSatisfied = -1;
|
|
auto possibleMatches = scopeLookup(scope, lookup);
|
|
std::cout << "Template Class instantiation has " << possibleMatches.size() << " possible matches." << std::endl;
|
|
for (auto i : possibleMatches) {
|
|
if (i->getDataRef()->type != type_def)
|
|
continue;
|
|
NodeTree<Symbol>* templateSyntaxTree = i->getDataRef()->valueType->templateDefinition;
|
|
|
|
auto nameTraitsPairs = makeTemplateNameTraitPairs(templateSyntaxTree->getChildren()[1]);
|
|
//Check if sizes match between the placeholder and actual template types
|
|
if (nameTraitsPairs.size() != templateInstantiationTypes.size())
|
|
continue;
|
|
|
|
bool traitsEqual = true;
|
|
int typeIndex = 0;
|
|
int currentTraitsSatisfied = 0;
|
|
for (auto j : nameTraitsPairs) {
|
|
// error out if not subset, or if we're a pointer but should have traits
|
|
if (!subset(j.second, templateInstantiationTypes[typeIndex]->traits) || (templateInstantiationTypes[typeIndex]->getIndirection() && j.second.size())) {
|
|
traitsEqual = false;
|
|
std::cout << "Traits not subset for " << j.first << " and " << templateInstantiationTypes[typeIndex]->toString() << ": ";
|
|
//std::cout << baseType << " " << indirection << " " << typeDefinition << " " << templateDefinition << " " << traits << ;
|
|
std::copy(j.second.begin(), j.second.end(), std::ostream_iterator<std::string>(std::cout, " "));
|
|
std::cout << " vs ";
|
|
std::copy(templateInstantiationTypes[typeIndex]->traits.begin(), templateInstantiationTypes[typeIndex]->traits.end(), std::ostream_iterator<std::string>(std::cout, " "));
|
|
std::cout << std::endl;
|
|
break;
|
|
} else {
|
|
std::cout << "Traits ARE subset for " << j.first << " and " << templateInstantiationTypes[typeIndex]->toString() << ": ";
|
|
//std::cout << baseType << " " << indirection << " " << typeDefinition << " " << templateDefinition << " " << traits << ;
|
|
std::copy(j.second.begin(), j.second.end(), std::ostream_iterator<std::string>(std::cout, " "));
|
|
std::cout << " vs ";
|
|
std::copy(templateInstantiationTypes[typeIndex]->traits.begin(), templateInstantiationTypes[typeIndex]->traits.end(), std::ostream_iterator<std::string>(std::cout, " "));
|
|
std::cout << std::endl;
|
|
}
|
|
currentTraitsSatisfied += j.second.size();
|
|
typeIndex++;
|
|
}
|
|
if (!traitsEqual)
|
|
continue;
|
|
|
|
//See if this is a better match than the current best
|
|
if (currentTraitsSatisfied > bestNumTraitsSatisfied) {
|
|
mostFittingTemplates.clear();
|
|
std::cout << "Class satisfying " << currentTraitsSatisfied << " beats previous " << bestNumTraitsSatisfied << std::endl;
|
|
bestNumTraitsSatisfied = currentTraitsSatisfied;
|
|
} else if (currentTraitsSatisfied < bestNumTraitsSatisfied)
|
|
continue;
|
|
mostFittingTemplates.insert(i);
|
|
std::cout << "Current class fits, satisfying " << currentTraitsSatisfied << " traits" << std::endl;
|
|
}
|
|
if (!mostFittingTemplates.size()) {
|
|
std::cout << "No template classes fit for " << lookup << "!" << std::endl;
|
|
std::cerr << "in file " << getUpperTranslationUnit(scope)->getDataRef()->symbol.getName() << std::endl;
|
|
throw "No matching template classes";
|
|
} else if (mostFittingTemplates.size() > 1) {
|
|
std::cout << "Multiple template classes fit with equal number of traits satisfied for " << lookup << "!" << std::endl;
|
|
throw "Multiple matching template classes";
|
|
}
|
|
return *mostFittingTemplates.begin();
|
|
}
|
|
|
|
void ASTTransformation::unifyType(NodeTree<Symbol> *syntaxType, Type type, std::map<std::string, Type>* templateTypeMap, std::map<std::string, Type*> typeMap) {
|
|
// First, get rid of the reference part - we don't care for unification
|
|
syntaxType = syntaxType->getChildren().back();
|
|
|
|
// Ok, 3 options for syntaxType here.
|
|
// 1) This a basic type. (int, or object, etc)
|
|
// THIS ONE will fall through and get put in the map, but it
|
|
// doesn't matter b/c it'll get filterd out in unifyTemplateFunction
|
|
// I also kina feel like maybe I need to worry about typeMap, which is why
|
|
// I passed it in... It would contain the typemap from our scope if we are
|
|
// doing a template member function of a templated object
|
|
// 2) This is a template type type (i.e. T)
|
|
// match! set up templateTypeMap[T] -> type
|
|
// 3) This some sort of instantiated template
|
|
// a) instantiated with some other type (i.e. vector<int>)
|
|
// THIS ONE will fall through and get put in the map, but it
|
|
// doesn't matter b/c it'll get filterd out in unifyTemplateFunction
|
|
// b) instantiated with a template type type (i.e. vector<T>)
|
|
// this will be a bit of a pain too
|
|
// 4) This is a pointer type, go down a pointer level
|
|
// 5) This is a function type, unify on parameter types and return type
|
|
|
|
auto children = syntaxType->getChildren();
|
|
|
|
if (children.back()->getDataRef()->getName() == "function_type") {
|
|
if (!type.returnType)
|
|
return;
|
|
auto childrenTypes = getNodes("type", children.back()->getChildren());
|
|
// unify params
|
|
for (int i = 0; i < childrenTypes.size()-1; i++)
|
|
unifyType(childrenTypes[i], *type.parameterTypes[i], templateTypeMap, typeMap);
|
|
unifyType(childrenTypes.back(), *type.returnType, templateTypeMap, typeMap);
|
|
return;
|
|
}
|
|
|
|
if (children.size() == 1) {
|
|
(*templateTypeMap)[concatSymbolTree(children.front())] = type;
|
|
// I also kina feel like maybe I need to worry about typeMap, which is why
|
|
// I passed it in... It would contain the typemap from our scope if we are
|
|
// doing a template member function of a templated object
|
|
} else {
|
|
// go down one in our pointer
|
|
if (children.front()->getDataRef()->getValue() == "*") {
|
|
// gotta be a better way to do this
|
|
Type* clonedType = type.clone();
|
|
clonedType->decreaseIndirection();
|
|
unifyType(children.back(), *clonedType, templateTypeMap, typeMap);
|
|
delete clonedType;
|
|
return;
|
|
}
|
|
|
|
if (type.typeDefinition) {
|
|
// ok, what happens here is that we get the origional type from our type. This is
|
|
// the same as the type we have now but it still has extra data from when it was instantiated
|
|
// like the templateTypeReplacement map, which we'll use.
|
|
// We get the <T, int, ...> etc part from the template we're matching against and unify it with the
|
|
// actual types the type we're unifying with used by passing it's <A, B, ...> through the templateTypeReplacement
|
|
// to get the type it was instantiated with.
|
|
auto origionalType = type.typeDefinition->getDataRef()->valueType;
|
|
auto typeTemplateDefinition = origionalType->templateDefinition;
|
|
// we have to get rid of the scope partion of the scoped_identifier so we can compare properly with the typeTemplateDefinition's identifier
|
|
auto scoped = getNode("scoped_identifier", children);
|
|
NodeTree<Symbol>* ident = nullptr;
|
|
while(scoped && !ident) {
|
|
ident = getNode("identifier", scoped);
|
|
scoped = getNode("scoped_identifier", scoped);
|
|
}
|
|
//if (typeTemplateDefinition) {
|
|
//std::cout << concatSymbolTree(ident) << std::endl;
|
|
//std::cout << concatSymbolTree(getNode("identifier", typeTemplateDefinition->getChildren())) << std::endl;
|
|
//}
|
|
if (typeTemplateDefinition && concatSymbolTree(ident) == concatSymbolTree(getNode("identifier", typeTemplateDefinition->getChildren()))) {
|
|
std::vector<NodeTree<Symbol>*> uninTypeInstTypes = getNodes("type", getNode("template_inst", children));
|
|
std::vector<NodeTree<Symbol>*> typeInstTypes = getNodes("template_param", getNode("template_dec", typeTemplateDefinition->getChildren()));
|
|
for (int i = 0; i < uninTypeInstTypes.size(); i++) {
|
|
std::cout << concatSymbolTree(uninTypeInstTypes[i]) << " : " << origionalType->toString() << " : " << concatSymbolTree(typeInstTypes[i]) << std::endl;
|
|
std::cout << "which is " << origionalType->templateTypeReplacement[concatSymbolTree(typeInstTypes[i])]->toString() << std::endl;
|
|
//std::cout << "which is " << *origionalType->templateTypeReplacement[concatSymbolTree(typeInstTypes[i])] << std::endl;
|
|
unifyType(uninTypeInstTypes[i], *origionalType->templateTypeReplacement[concatSymbolTree(typeInstTypes[i])], templateTypeMap, typeMap);
|
|
}
|
|
|
|
return;
|
|
}
|
|
throw "the inference just isn't good enough";
|
|
}
|
|
throw "the inference just isn't good enough";
|
|
}
|
|
}
|
|
|
|
void ASTTransformation::unifyTemplateFunction(NodeTree<ASTData>* templateFunction, std::vector<Type> types, std::vector<Type*>* templateInstantiationTypes, std::map<std::string, Type*> typeMap) {
|
|
NodeTree<Symbol>* templateSyntaxTree = templateFunction->getDataRef()->valueType->templateDefinition;
|
|
std::vector<NodeTree<Symbol>*> templateParameters = getNodes("typed_parameter", templateSyntaxTree);
|
|
if (templateParameters.size() != types.size())
|
|
return;
|
|
std::map<std::string, Type> templateTypeMap;
|
|
for (int i = 0; i < types.size(); i++)
|
|
unifyType(getNode("type", templateParameters[i]), types[i], &templateTypeMap, typeMap);
|
|
for (auto instantiationParam : getNodes("template_param", getNode("template_dec", templateSyntaxTree))) {
|
|
templateInstantiationTypes->push_back(templateTypeMap[concatSymbolTree(getNode("identifier", instantiationParam))].clone()); // gotta be careful of catching the traits in the concat
|
|
}
|
|
}
|
|
|
|
//Lookup function for template functions. It has some extra concerns compared to function lookup, namely traits
|
|
NodeTree<ASTData>* ASTTransformation::templateFunctionLookup(NodeTree<ASTData>* scope, std::string lookup, std::vector<Type*>* templateInstantiationTypes, std::vector<Type> types, std::map<std::string, Type*> scopeTypeMap) {
|
|
std::map<NodeTree<ASTData>*, std::vector<Type*>> templateInstantiationTypesPerFunction;
|
|
std::set<NodeTree<ASTData>*> mostFittingTemplates;
|
|
int bestNumTraitsSatisfied = -1;
|
|
auto possibleMatches = scopeLookup(scope, lookup);
|
|
std::cout << "Template Function instantiation has " << possibleMatches.size() << " possible matches." << std::endl;
|
|
int index = 1;
|
|
for (auto i : possibleMatches) {
|
|
if (i->getDataRef()->type != function)
|
|
continue;
|
|
std::cout << "Possibility " << index++ << std::endl;
|
|
NodeTree<Symbol>* templateSyntaxTree = i->getDataRef()->valueType->templateDefinition;
|
|
if (!templateSyntaxTree) {
|
|
std::cout << "Not a template, skipping" << std::endl;
|
|
continue;
|
|
}
|
|
// We have the type map here because we might want to augment it with the typeMap from
|
|
// the current scope, which would happen if we're trying to instantiate a template member function
|
|
std::map<std::string, Type*> typeMap = scopeTypeMap;
|
|
// If template instantiation was explicit, use those types. Otherwise, unify to find them
|
|
if (templateInstantiationTypes->size()) {
|
|
templateInstantiationTypesPerFunction[i] = *templateInstantiationTypes;
|
|
std::cout << "passed in types" << std::endl;
|
|
}else{
|
|
unifyTemplateFunction(i, types, &templateInstantiationTypesPerFunction[i], typeMap);
|
|
std::cout << "unified types" << std::endl;
|
|
}
|
|
std::cout << "TYPES ARE: ";
|
|
for (Type *a : templateInstantiationTypesPerFunction[i])
|
|
std::cout << a->toString() << " : ";
|
|
std::cout << std::endl;
|
|
auto nameTraitsPairs = makeTemplateNameTraitPairs(templateSyntaxTree->getChildren()[1]);
|
|
//Check if sizes match between the placeholder and actual template types
|
|
if (nameTraitsPairs.size() != templateInstantiationTypesPerFunction[i].size())
|
|
continue;
|
|
|
|
bool traitsEqual = true;
|
|
int typeIndex = 0;
|
|
int currentTraitsSatisfied = 0;
|
|
for (auto j : nameTraitsPairs) {
|
|
// error out if not subset, or if we're a pointer but should have traits
|
|
if (!subset(j.second, templateInstantiationTypesPerFunction[i][typeIndex]->traits) || (templateInstantiationTypesPerFunction[i][typeIndex]->getIndirection() && j.second.size())) {
|
|
traitsEqual = false;
|
|
std::cout << "Traits not a subset for " << j.first << " and " << templateInstantiationTypesPerFunction[i][typeIndex]->toString() << ": |";
|
|
std::copy(j.second.begin(), j.second.end(), std::ostream_iterator<std::string>(std::cout, " "));
|
|
std::cout << "| vs |";
|
|
std::copy(templateInstantiationTypesPerFunction[i][typeIndex]->traits.begin(), templateInstantiationTypesPerFunction[i][typeIndex]->traits.end(), std::ostream_iterator<std::string>(std::cout, " "));
|
|
std::cout << "|" << std::endl;
|
|
break;
|
|
} else {
|
|
std::cout << "Traits ARE a subset for " << j.first << " and " << templateInstantiationTypesPerFunction[i][typeIndex]->toString() << ": ";
|
|
std::copy(j.second.begin(), j.second.end(), std::ostream_iterator<std::string>(std::cout, " "));
|
|
std::cout << " vs ";
|
|
std::copy(templateInstantiationTypesPerFunction[i][typeIndex]->traits.begin(), templateInstantiationTypesPerFunction[i][typeIndex]->traits.end(), std::ostream_iterator<std::string>(std::cout, " "));
|
|
std::cout << std::endl;
|
|
}
|
|
//As we go, build up the typeMap for when we transform the parameters for parameter checking
|
|
typeMap[j.first] = templateInstantiationTypesPerFunction[i][typeIndex];
|
|
currentTraitsSatisfied += j.second.size();
|
|
typeIndex++;
|
|
}
|
|
if (!traitsEqual)
|
|
continue;
|
|
|
|
//std::vector<NodeTree<Symbol>*> functionParameters = slice(templateSyntaxTree->getChildren(), 2, -4, 2); //skip name, intervening commas, return type, and the code block
|
|
std::vector<NodeTree<Symbol>*> functionParameters = getNodes("typed_parameter", templateSyntaxTree->getChildren());
|
|
std::cout << functionParameters.size() << " " << types.size() << std::endl;
|
|
if (functionParameters.size() != types.size())
|
|
continue;
|
|
|
|
bool parameterTypesMatch = true;
|
|
for (int j = 0; j < functionParameters.size(); j++) {
|
|
auto paramType = typeFromTypeNode(functionParameters[j]->getChildren()[2], scope, typeMap);
|
|
std::cout << "Template param type: " << paramType->toString() << " : Needed Type: " << types[j].toString() << std::endl;
|
|
// use test_equality so we can pass false and not care about references
|
|
if (!paramType->test_equality(types[j], false)) {
|
|
parameterTypesMatch = false;
|
|
std::cout << "Not equal template param: " << paramType->toString() << " : Needed Type actual param: " << types[j].toString() << std::endl;
|
|
break;
|
|
}
|
|
}
|
|
if (!parameterTypesMatch)
|
|
continue;
|
|
//See if this is a better match than the current best
|
|
if (currentTraitsSatisfied > bestNumTraitsSatisfied) {
|
|
mostFittingTemplates.clear();
|
|
std::cout << "Function satisfying " << currentTraitsSatisfied << " beats previous " << bestNumTraitsSatisfied << std::endl;
|
|
bestNumTraitsSatisfied = currentTraitsSatisfied;
|
|
} else if (currentTraitsSatisfied < bestNumTraitsSatisfied)
|
|
continue;
|
|
mostFittingTemplates.insert(i);
|
|
std::cout << "Current function fits, satisfying " << currentTraitsSatisfied << " traits" << std::endl;
|
|
}
|
|
if (!mostFittingTemplates.size()) {
|
|
std::cout << "No template functions fit for " << lookup << "(";
|
|
for (auto t : types)
|
|
std::cout << t.toString() + ", ";
|
|
std::cout << ")!" << std::endl;
|
|
std::cout << "in file " << getUpperTranslationUnit(scope)->getDataRef()->symbol.getName() << std::endl;
|
|
throw "No matching template functions";
|
|
} else if (mostFittingTemplates.size() > 1) {
|
|
std::cout << "Multiple template functions fit with equal number of traits satisfied for " << lookup << "!" << std::endl;
|
|
throw "Multiple matching template functions";
|
|
}
|
|
// Assign our most fitting instantiation types to what we were passed in
|
|
// if it was empty
|
|
if (templateInstantiationTypes->size() == 0)
|
|
*templateInstantiationTypes = templateInstantiationTypesPerFunction[*mostFittingTemplates.begin()];
|
|
std::cout << *mostFittingTemplates.begin() << std::endl;
|
|
return *mostFittingTemplates.begin();
|
|
}
|
|
|
|
//Extract pairs of type names and traits
|
|
std::vector<std::pair<std::string, std::set<std::string>>> ASTTransformation::makeTemplateNameTraitPairs(NodeTree<Symbol>* templateNode) {
|
|
std::vector<NodeTree<Symbol>*> templateParams = slice(templateNode->getChildren(), 1, -2, 2); //Skip <, >, and interveaning commas
|
|
std::vector<std::pair<std::string, std::set<std::string>>> typePairs;
|
|
for (auto i : templateParams) {
|
|
if (i->getChildren().size() > 1)
|
|
typePairs.push_back(std::make_pair(concatSymbolTree(i->getChildren()[0]), parseTraits(i->getChildren()[1])));
|
|
else
|
|
typePairs.push_back(std::make_pair(concatSymbolTree(i->getChildren()[0]), std::set<std::string>()));
|
|
}
|
|
return typePairs;
|
|
}
|
|
|
|
std::map<std::string, Type*> ASTTransformation::makeTemplateFunctionTypeMap(NodeTree<Symbol>* templateNode, std::vector<Type*> types, std::map<std::string, Type*> scopeTypeMap) {
|
|
auto typePairs = makeTemplateNameTraitPairs(templateNode);
|
|
// we start with the scopeTypeMap because we want to combine
|
|
// them (this is for templated member functions of templated objects)
|
|
std::map<std::string, Type*> typeMap = scopeTypeMap;
|
|
int typeIndex = 0;
|
|
std::cout << typePairs.size() << " " << types.size() << std::endl;
|
|
for (auto i : typePairs) {
|
|
typeMap[i.first] = types[typeIndex];
|
|
std::cout << "Mapping " << i.first << " to " << types[typeIndex]->toString() << std::endl;
|
|
typeIndex++;
|
|
}
|
|
return typeMap;
|
|
}
|
|
|
|
// We need recursion protection
|
|
std::vector<NodeTree<ASTData>*> ASTTransformation::scopeLookup(NodeTree<ASTData>* scope, std::string lookup, bool includeModules) {
|
|
return scopeLookup(scope, lookup, includeModules, std::set<NodeTree<ASTData>*>());
|
|
}
|
|
|
|
NodeTree<ASTData>* ASTTransformation::generateThis(NodeTree<ASTData>* scope) {
|
|
NodeTree<ASTData>* identifier = languageLevelReservedWords["this"][0];
|
|
identifier = new NodeTree<ASTData>("identifier", identifier->getData());
|
|
// if we're looking for this, traverse up until we find the declaration of this object and assign it's type to this
|
|
NodeTree<ASTData>* trans;
|
|
for (trans = scope; trans->getDataRef()->type != type_def; trans = trans->getDataRef()->scope["~enclosing_scope"][0]);
|
|
identifier->getDataRef()->valueType = trans->getDataRef()->valueType->clone();
|
|
identifier->getDataRef()->valueType->increaseIndirection();
|
|
identifier->getDataRef()->scope = trans->getDataRef()->scope;
|
|
return identifier;
|
|
}
|
|
|
|
std::vector<NodeTree<ASTData>*> ASTTransformation::scopeLookup(NodeTree<ASTData>* scope, std::string lookup, bool includeModules, std::set<NodeTree<ASTData>*> visited) {
|
|
std::cout << "Scp]|[e looking up " << lookup << std::endl;
|
|
std::cout << "current: " << scope->getDataRef()->toString() << std::endl;
|
|
//for (auto i : scope->getDataRef()->scope)
|
|
//std::cout << "\t" << i.first << std::endl;
|
|
//std::cout << i.first << " : " << i.second->toString() << std::endl;
|
|
// Don't visit this node again when looking for the smae lookup. Note that we don't prevent coming back for the scope operator, as that should be able to come back.
|
|
if (visited.find(scope) != visited.end())
|
|
return std::vector<NodeTree<ASTData>*>();
|
|
visited.insert(scope);
|
|
//We first check to see if it's one of the special reserved identifiers (only this, for now) and return early if it is.
|
|
auto LLElementIterator = languageLevelReservedWords.find(lookup);
|
|
if (LLElementIterator != languageLevelReservedWords.end()) {
|
|
std::cout << "found it at language level as reserved word." << std::endl;
|
|
NodeTree<ASTData>* identifier = LLElementIterator->second[0];
|
|
if (lookup == "this") {
|
|
identifier = generateThis(scope);
|
|
}
|
|
std::vector<NodeTree<ASTData>*> thingy; thingy.push_back(identifier);
|
|
return thingy;
|
|
}
|
|
std::vector<NodeTree<ASTData>*> matches;
|
|
// First, we check for scope operator (::) but only if occurs before a "<" as this would signal the beginning of a template instatiation inside type
|
|
// If we find it, we look up the left side of the :: and then use the resuts as the scope for looking up the right side, recursively.
|
|
size_t scopeOpPos = lookup.find("::");
|
|
size_t angleBrktPos = lookup.find("<");
|
|
if (scopeOpPos != std::string::npos && (angleBrktPos == std::string::npos || scopeOpPos < angleBrktPos)) {
|
|
std::cout << "Has :: operator, doing left then right" << std::endl;
|
|
for (auto scopeMatch : scopeLookup(scope, strSlice(lookup, 0, scopeOpPos), true)) {
|
|
std::cout << "Trying right side with found left side " << scopeMatch->getDataRef()->toString() << std::endl;
|
|
auto addMatches = scopeLookup(scopeMatch, strSlice(lookup, scopeOpPos+2, -1), includeModules);
|
|
matches.insert(matches.end(), addMatches.begin(), addMatches.end());
|
|
}
|
|
return matches;
|
|
}
|
|
|
|
std::map<std::string, std::vector<NodeTree<ASTData>*>> scopeMap = scope->getDataRef()->scope;
|
|
auto possibleMatches = scopeMap.find(lookup);
|
|
if (possibleMatches != scopeMap.end()) {
|
|
for (auto i : possibleMatches->second)
|
|
if (includeModules || i->getName() != "translation_unit")
|
|
matches.push_back(i);
|
|
std::cout << "Found " << possibleMatches->second.size() << " match(s) at " << scope->getDataRef()->toString() << std::endl;
|
|
}
|
|
// Add results from our enclosing scope, if it exists.
|
|
// If it doesn't we should be at the top of a translation unit, and we should check the scope of import statements.
|
|
auto enclosingIterator = scopeMap.find("~enclosing_scope");
|
|
if (enclosingIterator != scopeMap.end()) {
|
|
std::vector<NodeTree<ASTData>*> upperResult = scopeLookup(enclosingIterator->second[0], lookup, includeModules, visited);
|
|
matches.insert(matches.end(), upperResult.begin(), upperResult.end());
|
|
} else {
|
|
// Ok, let's iterate through and check for imports
|
|
for (auto child : scope->getChildren()) {
|
|
if (child->getDataRef()->type == import) {
|
|
auto importScope = child->getDataRef()->scope;
|
|
// Check if there is a match named explicily in the import's scope (i.e. looking for a and the import is import somefile: a;)
|
|
// If so, add it's members to our matches
|
|
auto importLookupItr = importScope.find(lookup);
|
|
if (importLookupItr != importScope.end()) {
|
|
auto addMatches = importLookupItr->second;
|
|
matches.insert(matches.end(), addMatches.begin(), addMatches.end());
|
|
}
|
|
// Check if there is an uncionditional import to follow (i.e. import somefile: *;)
|
|
// If so, continue the search in that scope
|
|
auto importStarItr = importScope.find("*");
|
|
if (importStarItr != importScope.end()) {
|
|
auto addMatches = scopeLookup(importStarItr->second[0], lookup, includeModules, visited);
|
|
matches.insert(matches.end(), addMatches.begin(), addMatches.end());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return matches;
|
|
}
|
|
|
|
// Find the translation unit that is the top of the passed in node
|
|
NodeTree<ASTData>* ASTTransformation::getUpperTranslationUnit(NodeTree<ASTData>* node) {
|
|
auto scope = node->getDataRef()->scope;
|
|
auto iter = scope.find("~enclosing_scope");
|
|
while(iter != scope.end()) {
|
|
node = iter->second[0];
|
|
scope = node->getDataRef()->scope;
|
|
iter = scope.find("~enclosing_scope");
|
|
}
|
|
return node;
|
|
}
|
|
|
|
//Create a type from a syntax tree. This can get complicated with templates
|
|
Type* ASTTransformation::typeFromTypeNode(NodeTree<Symbol>* typeNode, NodeTree<ASTData>* scope, std::map<std::string, Type*> templateTypeReplacements) {
|
|
|
|
int indirection = 0;
|
|
bool is_reference = false;
|
|
ValueType baseType;
|
|
NodeTree<ASTData>* typeDefinition = NULL;
|
|
std::set<std::string> traits;
|
|
// if this is a reference, we also have to step down a level
|
|
if (typeNode->getChildren().size() && typeNode->getChildren().front()->getDataRef()->getValue() == "ref") {
|
|
is_reference = true;
|
|
}
|
|
// always step down below the ref level
|
|
typeNode = typeNode->getChildren().back();
|
|
|
|
std::string typeIn = concatSymbolTree(typeNode);
|
|
|
|
// To counter this, for every indirection we step down a level
|
|
//while (typeIn[indirection] == '*') {
|
|
//since fun(*T):int gets transformed to *T:int, the text based way doesn't work anymore
|
|
while (typeNode->getChildren().size() && typeNode->getChildren().front()->getDataRef()->getValue() == "*") {
|
|
indirection++;
|
|
typeNode = typeNode->getChildren().back();
|
|
}
|
|
std::string edited = strSlice(typeIn, indirection, -1);
|
|
if (edited == "void")
|
|
baseType = void_type;
|
|
else if (edited == "bool")
|
|
baseType = boolean;
|
|
else if (edited == "int")
|
|
baseType = integer;
|
|
else if (edited == "float")
|
|
baseType = floating;
|
|
else if (edited == "double")
|
|
baseType = double_percision;
|
|
else if (edited == "char")
|
|
baseType = character;
|
|
else if (typeNode->getChildren().size() && typeNode->getChildren()[0]->getDataRef()->getName() == "function_type") {
|
|
baseType = function_type;
|
|
std::vector<Type*> types;
|
|
for (auto typeSyntaxNode : getNodes("type", typeNode->getChildren()[0]->getChildren()))
|
|
types.push_back(typeFromTypeNode(typeSyntaxNode, scope, templateTypeReplacements));
|
|
return new Type(slice(types, 0, -2),types.back(), is_reference);
|
|
} else {
|
|
baseType = none;
|
|
|
|
auto possibleMatches = scopeLookup(scope, edited);
|
|
if (possibleMatches.size()) {
|
|
typeDefinition = possibleMatches[0];
|
|
traits = typeDefinition->getDataRef()->valueType->traits;
|
|
}
|
|
//So either this is an uninstatiated template class type, or this is literally a template type T, and we should get it from our
|
|
//templateTypeReplacements map. We try this first
|
|
if (templateTypeReplacements.find(edited) != templateTypeReplacements.end()) {
|
|
std::cout << "Template type! (" << edited << ")" << std::endl;
|
|
Type* templateTypeReplacement = templateTypeReplacements[edited]->clone();
|
|
templateTypeReplacement->modifyIndirection(indirection);
|
|
templateTypeReplacement->is_reference = is_reference;
|
|
return templateTypeReplacement;
|
|
}
|
|
std::cout << edited << " was not found in templateTypeReplacements" << std::endl;
|
|
std::cout << "templateTypeReplacements consists of : ";
|
|
for (auto i : templateTypeReplacements)
|
|
std::cout << i.first << " ";
|
|
std::cout << std::endl;
|
|
|
|
std::cout << possibleMatches.size() << " " << typeNode->getChildren().size() << std::endl;
|
|
if (typeNode->getChildren().size() > 1)
|
|
std::cout << typeNode->getChildren()[1]->getDataRef()->getName() << std::endl;
|
|
//If not, we better instantiate it and then add it to the highest (not current) scope
|
|
if (possibleMatches.size() == 0 && typeNode->getChildren().size() > 1 && typeNode->getChildren()[1]->getData().getName() == "template_inst") {
|
|
std::cout << "Template type: " << edited << " not yet instantiated" << std::endl;
|
|
|
|
//We pull out the replacement types first so that we can choose the correct possibly overloaded template
|
|
std::vector<NodeTree<Symbol>*> templateParamInstantiationNodes = slice(typeNode->getChildren()[1]->getChildren(), 1, -2, 2); //same
|
|
std::vector<Type*> templateParamInstantiationTypes;
|
|
std::string instTypeString = "";
|
|
for (int i = 0; i < templateParamInstantiationNodes.size(); i++) {
|
|
Type* instType = typeFromTypeNode(templateParamInstantiationNodes[i], scope, templateTypeReplacements);
|
|
/*******************************************************************************
|
|
* WE RETURN EARLY IF ONE OF OUR REPLACEMENT INST TYPES IS TEMPLATE_TYPE_TYPE
|
|
* WE DO THIS BECAUSE WE CAN'T ACTUALLY INSTATNTIATE WITH THIS.
|
|
* THIS CAN HAPPEN IN THE FOLLOWING SITUATIONS.
|
|
* fun example<T>(a:vec<T>):T { return a.at(0); }
|
|
* etc
|
|
*******************************************************************************/
|
|
if (instType->baseType == template_type_type)
|
|
return instType;
|
|
templateParamInstantiationTypes.push_back(instType);
|
|
instTypeString += (instTypeString == "") ? instType->toString(false) : "," + instType->toString(false);
|
|
}
|
|
|
|
//Finish creating the new name for this instantiation
|
|
std::string classNameWithoutTemplate = concatSymbolTree(typeNode->getChildren()[0]);
|
|
std::string templateLookupName = classNameWithoutTemplate + "<" + instTypeString + ">";
|
|
|
|
// Recheck for prior definition here, now that we have the true name.
|
|
possibleMatches = scopeLookup(scope, templateLookupName);
|
|
if (possibleMatches.size()) {
|
|
typeDefinition = possibleMatches[0];
|
|
traits = typeDefinition->getDataRef()->valueType->traits;
|
|
std::cout << "Found already instantiated template of " << templateLookupName << " at second check" << std::endl;
|
|
} else {
|
|
std::cout << "Did not find already instantiated template of " << templateLookupName << " at second check" << std::endl;
|
|
//Look up this template's plain definition. It's type has the syntax tree that we need to parse
|
|
NodeTree<ASTData>* templateDefinition = templateClassLookup(scope, concatSymbolTree(typeNode->getChildren()[0]), templateParamInstantiationTypes);
|
|
|
|
std::string fullyInstantiatedName = templateDefinition->getDataRef()->symbol.getName() + "<" + instTypeString + ">";
|
|
|
|
NodeTree<Symbol>* templateSyntaxTree = templateDefinition->getDataRef()->valueType->templateDefinition;
|
|
//Create a new map of template type names to actual types.
|
|
std::vector<NodeTree<Symbol>*> templateParamPlaceholderNodes = slice(templateSyntaxTree->getChildren()[1]->getChildren(), 1, -2, 2); //Don't get beginning or end for < or >, skip commas in the middle
|
|
std::map<std::string, Type*> newTemplateTypeReplacement;
|
|
for (int i = 0; i < templateParamInstantiationTypes.size(); i++)
|
|
newTemplateTypeReplacement[concatSymbolTree(templateParamPlaceholderNodes[i])] = templateParamInstantiationTypes[i];
|
|
|
|
typeDefinition = new NodeTree<ASTData>("type_def", ASTData(type_def, Symbol(fullyInstantiatedName, true, fullyInstantiatedName)));
|
|
traits = templateDefinition->getDataRef()->valueType->traits; // We have the same traits as the template definition
|
|
Type* selfType = new Type(typeDefinition, traits); // Type is self-referential since this is the definition.
|
|
typeDefinition->getDataRef()->valueType = selfType;
|
|
|
|
//Note that we're adding to the current top scope. This makes it more efficient by preventing multiple instantiation and should not cause any problems
|
|
//It also makes sure it gets generated in the right place
|
|
//std::cout << "Adding to top scope and template's origional scope with fullyInstantiatedName " << fullyInstantiatedName << std::endl;
|
|
//topScope->getDataRef()->scope[fullyInstantiatedName].push_back(typeDefinition);
|
|
//topScope->addChild(typeDefinition); Add this object the the highest scope's
|
|
|
|
// Actually, let's just put it in the scope of the origional template, which should work just fine under the new scoping rules and will ACTUALLY prevent multiple instantiation.
|
|
// At least, hopefully it will if we also check it's scope for it. Which I think it should be anyway. Yeah, I think it should work.
|
|
std::cout << "Adding to template top scope and template's origional scope with fullyInstantiatedName " << fullyInstantiatedName << std::endl;
|
|
auto templateTopScope = getUpperTranslationUnit(templateDefinition);
|
|
std::cout << "UPPER TRANS for " << fullyInstantiatedName << " " << templateTopScope->getDataRef()->toString() << std::endl;
|
|
templateTopScope->getDataRef()->scope[fullyInstantiatedName].push_back(typeDefinition);
|
|
templateTopScope->addChild(typeDefinition); // Add this object the the highest scope's
|
|
|
|
//NodeTree<ASTData>* templateHighScope = templateDefinition->getDataRef()->scope["~enclosing_scope"][0];
|
|
//if (topScope != templateHighScope)
|
|
//templateHighScope->getDataRef()->scope[fullyInstantiatedName].push_back(typeDefinition);
|
|
// We put it in the scope of the template so that it can find itself (as it's scope is its template definition)
|
|
addToScope(fullyInstantiatedName, typeDefinition, templateDefinition);
|
|
//Note that the instantiated template's scope is the template's definition.
|
|
addToScope("~enclosing_scope", templateDefinition, typeDefinition);
|
|
|
|
// We only partially instantiate templates no matter what now
|
|
// They are all fully instantiated in the loop at the end of the 4th pass
|
|
// This is done for code simplicity and so that that loop can do template class methods
|
|
// that instantiate other templates that instantiate other templates while still retaining the
|
|
// deferred method allowing us to correctly instantiate multiple levels of mututally recursive definitions.
|
|
selfType->templateDefinition = templateSyntaxTree; //We're going to still need this when we finish instantiating
|
|
selfType->templateTypeReplacement = newTemplateTypeReplacement; //Save the types for use when this is fully instantiated in pass 4
|
|
for (auto daPair : selfType->templateTypeReplacement) {
|
|
std::cout << " BREAK HERE " << daPair.first << " : " << daPair.second->toString() << std::endl;
|
|
if (daPair.second == NULL)
|
|
std::cout << " BREAK HERE " << std::endl;
|
|
}
|
|
secondPassDoClassInsides(typeDefinition, templateSyntaxTree->getChildren(), newTemplateTypeReplacement); //Use these types when instantiating data members
|
|
}
|
|
} else if (possibleMatches.size() == 0) {
|
|
std::cout << "Could not find type " << edited << ", returning NULL" << std::endl;
|
|
return NULL;
|
|
} else {
|
|
std::cout << "Type: " << edited << " already instantiated with " << typeDefinition << ", will be " << Type(baseType, typeDefinition, indirection, is_reference, traits).toString() << std::endl;
|
|
}
|
|
}
|
|
Type* toReturn = new Type(baseType, typeDefinition, indirection, is_reference, traits);
|
|
std::cout << "Returning type " << toReturn->toString() << std::endl;
|
|
return toReturn;
|
|
}
|
|
|
|
// So we want to be able to call this with either the children which is one name and one template thingy (func<a>), or just the name (func), or even with just
|
|
// a string as the name if, for example, we're generating the name from an operator overload (which we do) (operator+)
|
|
NodeTree<ASTData>* ASTTransformation::tryToFindOrInstantiateFunctionTemplate(std::string functionName, NodeTree<ASTData>* scope, std::vector<Type> types, std::map<std::string, Type*> templateTypeReplacements) {
|
|
try {
|
|
return findOrInstantiateFunctionTemplate(functionName, std::vector<NodeTree<Symbol>*>(), scope, types, templateTypeReplacements);
|
|
} catch (const char *ex) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
NodeTree<ASTData>* ASTTransformation::findOrInstantiateFunctionTemplate(std::vector<NodeTree<Symbol>*> children, NodeTree<ASTData>* scope, std::vector<Type> types, std::map<std::string, Type*> templateTypeReplacements) {
|
|
return findOrInstantiateFunctionTemplate("", children, scope, types, templateTypeReplacements);
|
|
}
|
|
NodeTree<ASTData>* ASTTransformation::findOrInstantiateFunctionTemplate(std::string functionName, NodeTree<ASTData>* scope, std::vector<Type> types, std::map<std::string, Type*> templateTypeReplacements) {
|
|
return findOrInstantiateFunctionTemplate(functionName, std::vector<NodeTree<Symbol>*>(), scope, types, templateTypeReplacements);
|
|
}
|
|
NodeTree<ASTData>* ASTTransformation::findOrInstantiateFunctionTemplate(std::string functionName, std::vector<NodeTree<Symbol>*> children, NodeTree<ASTData>* scope, std::vector<Type> types, std::map<std::string, Type*> templateTypeReplacements) {
|
|
//First look to see if we can find this already instantiated
|
|
std::cout << "\n\nFinding or instantiating templated function\n\n" << std::endl;
|
|
if (children.size())
|
|
functionName = concatSymbolTree(children[0]);
|
|
std::string fullyInstantiatedName;
|
|
std::string scopelessFullyInstantiatedName;
|
|
std::vector<Type*> templateActualTypes;
|
|
NodeTree<ASTData>* templateDefinition = NULL;
|
|
|
|
// If this is a templated member function, we should also add this function to the object
|
|
NodeTree<ASTData>* objectForTemplateMethod = NULL;
|
|
// Ok, our scope might have a typeMap if we are inside a templated object and are looking
|
|
// for a templated member function
|
|
std::map<std::string, Type*> scopeTypeMap;
|
|
if (scope->getDataRef()->valueType && scope->getDataRef()->valueType->typeDefinition
|
|
&& scope->getDataRef()->valueType->typeDefinition->getDataRef()->valueType) {
|
|
objectForTemplateMethod = scope->getDataRef()->valueType->typeDefinition;
|
|
scopeTypeMap = objectForTemplateMethod->getDataRef()->valueType->templateTypeReplacement;
|
|
}
|
|
|
|
// Are we supposed to infer our instantiation, or not? If we have only one child we're inferring as we don't
|
|
// have the actual instantiation part. If do have the instantiation part, then we'll use that.
|
|
// Note that as a part o finferring the instantiation we already find the template, so we make that
|
|
// condtitional too (templateDefinition)
|
|
std::string instTypeString = "";
|
|
if (children.size() <= 1) {
|
|
// templateFunctionLookup adds the actual types to templateActualTypes if it's currently empty
|
|
templateDefinition = templateFunctionLookup(scope, functionName, &templateActualTypes, types, scopeTypeMap);
|
|
for (auto instType : templateActualTypes)
|
|
instTypeString += (instTypeString == "" ? instType->toString() : "," + instType->toString());
|
|
} else {
|
|
auto unsliced = children[1]->getChildren();
|
|
std::vector<NodeTree<Symbol>*> templateParamInstantiationNodes = slice(unsliced, 1 , -2, 2);//skip <, >, and commas
|
|
for (int i = 0; i < templateParamInstantiationNodes.size(); i++) {
|
|
Type* instType = typeFromTypeNode(templateParamInstantiationNodes[i], scope, templateTypeReplacements);
|
|
instTypeString += (instTypeString == "" ? instType->toString() : "," + instType->toString());
|
|
templateActualTypes.push_back(instType);
|
|
}
|
|
std::cout << "Size: " << templateParamInstantiationNodes.size() << std::endl;
|
|
}
|
|
fullyInstantiatedName = functionName + "<" + instTypeString + ">";
|
|
std::cout << "Looking for " << fullyInstantiatedName << std::endl;
|
|
std::cout << "Types are : ";
|
|
for (auto i : types)
|
|
std::cout << " " << i.toString();
|
|
std::cout << std::endl;
|
|
|
|
NodeTree<ASTData>* instantiatedFunction = functionLookup(scope, fullyInstantiatedName, types);
|
|
//If it already exists, return it
|
|
if (instantiatedFunction) {
|
|
std::cout << fullyInstantiatedName << " already exists! Returning" << std::endl;
|
|
return instantiatedFunction;
|
|
} else {
|
|
instantiatedFunction = functionLookup(topScope, fullyInstantiatedName, types);
|
|
if (instantiatedFunction) {
|
|
std::cout << fullyInstantiatedName << "already exists! Found in TopScope" << std::endl;
|
|
return instantiatedFunction;
|
|
}
|
|
std::cout << fullyInstantiatedName << " does NOT exist" << std::endl;
|
|
}
|
|
|
|
//Otherwise, we're going to instantiate it
|
|
//Find the template definitions
|
|
// templateFunctionLookup adds the actual types to templateActualTypes if it's currently empty
|
|
// by here, it's not as either we had the instantiation already or we figured out out before
|
|
// and are not actually doing this call
|
|
if (!templateDefinition)
|
|
templateDefinition = templateFunctionLookup(scope, functionName, &templateActualTypes, types, scopeTypeMap);
|
|
if (templateDefinition == NULL) {
|
|
std::cout << functionName << " search turned up null, returing null" << std::endl;
|
|
return NULL;
|
|
}
|
|
scopelessFullyInstantiatedName = templateDefinition->getDataRef()->symbol.getName() + "<" + instTypeString + ">";
|
|
|
|
NodeTree<Symbol>* templateSyntaxTree = templateDefinition->getDataRef()->valueType->templateDefinition;
|
|
// Makes a map between the names of the template placeholder parameters and the provided types
|
|
std::map<std::string, Type*> newTemplateTypeReplacement = makeTemplateFunctionTypeMap(templateSyntaxTree->getChildren()[1], templateActualTypes, scopeTypeMap);
|
|
|
|
std::vector<NodeTree<Symbol>*> templateChildren = templateSyntaxTree->getChildren();
|
|
for (int i = 0; i < templateChildren.size(); i++)
|
|
std::cout << ", " << i << " : " << templateChildren[i]->getDataRef()->getName();
|
|
std::cout << std::endl;
|
|
|
|
// return type should be looked up in template's scope
|
|
auto returnTypeNode = getNode("type", getNode("typed_return", templateChildren)); // if null, the typed_return had no children and we're supposed to automatically do a void type
|
|
auto returnType = returnTypeNode ? typeFromTypeNode(returnTypeNode, templateDefinition, newTemplateTypeReplacement): new Type(void_type);
|
|
instantiatedFunction = new NodeTree<ASTData>("function", ASTData(function, Symbol(scopelessFullyInstantiatedName, true), returnType));
|
|
addToScope("~enclosing_scope", templateDefinition->getDataRef()->scope["~enclosing_scope"][0], instantiatedFunction);
|
|
addToScope(scopelessFullyInstantiatedName, instantiatedFunction, templateDefinition->getDataRef()->scope["~enclosing_scope"][0]);
|
|
templateDefinition->getDataRef()->scope["~enclosing_scope"][0]->addChild(instantiatedFunction); // Add this object the the highest scope's
|
|
|
|
std::cout << "About to do children of " << functionName << " to " << fullyInstantiatedName << std::endl;
|
|
|
|
std::set<int> skipChildren;
|
|
auto parameters = transformChildren(getNodes("typed_parameter", templateSyntaxTree->getChildren()), skipChildren, instantiatedFunction, std::vector<Type>(), false, newTemplateTypeReplacement);
|
|
instantiatedFunction->addChildren(parameters);
|
|
// update type with actual type
|
|
instantiatedFunction->getDataRef()->valueType = new Type(mapNodesToTypePointers(parameters), instantiatedFunction->getDataRef()->valueType);
|
|
instantiatedFunction->addChild(transform(getNode("statement", templateSyntaxTree->getChildren()), instantiatedFunction, std::vector<Type>(), false, newTemplateTypeReplacement));
|
|
|
|
std::cout << "Fully Instantiated function " << functionName << " to " << fullyInstantiatedName << std::endl;
|
|
return instantiatedFunction;
|
|
}
|
|
|
|
NodeTree<ASTData>* ASTTransformation::addToScope(std::string name, NodeTree<ASTData>* toAdd, NodeTree<ASTData>* addTo) {
|
|
addTo->getDataRef()->scope[name].push_back(toAdd);
|
|
return addTo;
|
|
}
|
|
|
|
|
|
//Extract types from already transformed nodes
|
|
std::vector<Type*> mapNodesToTypePointers(std::vector<NodeTree<ASTData>*> nodes) {
|
|
std::vector<Type*> types;
|
|
for (auto i : nodes) {
|
|
std::cout << i->getDataRef()->toString() << std::endl;
|
|
types.push_back((i->getDataRef()->valueType));
|
|
}
|
|
return types;
|
|
}
|
|
|
|
//Extract types from already transformed nodes
|
|
std::vector<Type> mapNodesToTypes(std::vector<NodeTree<ASTData>*> nodes) {
|
|
std::vector<Type> types;
|
|
for (auto i : nodes) {
|
|
std::cout << i->getDataRef()->toString() << std::endl;
|
|
types.push_back(*(i->getDataRef()->valueType));
|
|
}
|
|
return types;
|
|
}
|